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OpenBuildingControl Preamble

Chapter 1

Preamble

1.1 Purpose of the Document

This document describes the development of the Control Description Language (CDL) that is being developed within the
OpenBuildingControl project. It also describes the process workflow, use cases and requirements, as well as a case study
that illustrates the use of CDL for performance comparison of a control sequence during design.

The document is a working document that is used as a discussion basis and will evolve as the development progresses.
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OpenBuildingControl Conventions

Chapter 2

Conventions

1. We write a requirement shall be met if it must be fulfilled. If the feature that implements a shall requirement is not in
the final system, then the system does not meet this requirement. We write a requirement should be met if it is not
critical to the system working, but is still desirable.

2. Text in bracket such as “[ . . . ]” denotes informative text that is not part of the specification.
3. Courier font names such as input denote variables or statements used in computer code.
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Chapter 3

Process Workflow

Fig. 3.1 shows the process of selecting, deploying and verifying a control sequence that we follow in OpenBuildingControl.
First, given regulations and efficiency targets, labeled as (1) in Fig. 3.1, a design engineer selects, configures, tests and
evaluates the performance of a control sequence using building energy simulation (2), starting from a control sequence
library that contains ASHRAE Guideline 36 sequences, as well as user-added sequences (3), linked to a model of the
mechanical system and the building (4). If the sequences meet closed-loop performance requirements, the designer ex-
ports a control specification, including the sequences and functional verification tests expressed in the Control Description
Language CDL (5). Optionally, for reuse in similar projects, the sequences can be added to a user-library (6). This specifi-
cation is used by the control vendor to bid on the project (7) and to implement the sequence (8). For current control product
lines, step (8) involves a translation of CDL to their programming languages, whereas in the future, control providers could
build systems that directly use CDL. Prior to operation, a commissioning provider verifies the correct functionality of these
implemented sequences by running functional tests against the electronic, executable specification in the Commissioning
and Functional Verification Tool (9). If the verification tests fail, the implementation needs to be corrected.

For closed-loop performance assessment, Modelica models of the HVAC systems and controls can be linked to a Modelica
envelope model [WZN11] or to an EnergyPlus envelope model. The latter can be done through Spawn of EnergyPlus
[WBG+20], which is being developed in a related project at https://lbl-srg.github.io/soep/.
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Fig. 3.1: Process workflow for controls design, specification and functional verification.
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Chapter 4

Use Cases

This section describes use cases for end-user interaction, including the following:

• use the controls design tool to design a control sequence and export it as a CDL-compliant specification,
• use the CDL to bid on a project and, when selected for the project, implement the control sequence in a building

automation system,
• use the control design tool to create control block diagrams in addition to control sequences and automatically

produce a points list with a standard naming convention and/or tagging convention, a plain language sequence
of operation, and verification that the control diagram includes all instrumentation required to complete the control
sequence,

• use the commissioning and functional verification tool during commissioning

4.1 Controls Design

4.1.1 Loading a Standard Sequence from a Library

This use case describes how to load, edit and store a control sequence from a library. For illustration, we use here a
sequence from the Guideline 36 library.

Use case name Loading a standard sequence from Guideline 36
Related Requirements User able to change the pre-set elements within the stan-

dard sequence, with automatic download of associated
CDL block diagram.

Goal in Context Enable fast adaptation of Guideline 36
Preconditions All Guideline 36 sequences need to be pre-programmed

into visual block diagrams using CDL. CDL and block di-
agrams need to be modular so that they can be easily
updated when key elements are changed/deleted/added.

continues on next page
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Table 4.1 – continued from previous page
Use case name Loading a standard sequence from Guideline 36
Successful End Condition User is able to download the CDL/block diagrams using

a specific reference to Guideline 36 sequences. User is
able to change/delete/add key elements using CDL.

Failed End Condition Missing Guideline 36 sequence in library.
When a user changes/deletes/adds elements to CDL/vi-
sual block diagram, no associated CDL/visual block dia-
gram appears/disappears.

Primary Actors Mechanical Designer/Consultant
Secondary Actors Controls contractor
Trigger Designing control system using Guideline 36 as default

sequence or a starting point, then needs to change key
elements because the system is different to Guideline 36
presumed system configuration.

Main Flow Action
1 User opens Guideline 36 library and sees a contents

menu of the standard sequences for selection.
2 User selects a sequence
3 The corresponding CDL and visual block diagram appears

in the controls design tool. Key mechanical elements (e.g.
fan, cooling coil valve, control damper) controlled by the
standard sequence are also displayed.

Extensions
1 User saves copy of the imported sequence prior to editing
2 User deletes/adds elementary blocks or composite

blocks.
2 User saves the modified sequence.

4.1.2 Customizing a Control Sequence for an HVAC System

This use case describes how to connect a control sequence to a system model and then customize the control sequence,
using a VAV system as an example.

Use case name Customizing a control sequence for a VAV system
Related Requirements n/a
Goal in Context A mechanical engineer wants to customize a control se-

quence, starting with a template.
Preconditions System model of the HVAC and building, with sensor out-

put signals and actuator input signals exposed.
Preconfigured control sequence, stored in the OpenBuild-
ingControls library.
A set of performance requirements.

continues on next page
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Table 4.2 – continued from previous page
Use case name Customizing a control sequence for a VAV system
Successful End Condition Implemented VAV sequence with customized control,

ready for performance assessment (Use case Perfor-
mance Assessment of a Control Sequence) and ready for
export in CDL for subsequent implementation.

Failed End Condition n/a
Primary Actors A mechanical engineer.
Secondary Actors The controls design tool with template control sequences

and a package with elementary CDL blocks.
The HVAC plant and control sequence library.

Trigger n/a
Main Flow Action
1 The user opens the controls design tool in OpenStudio
2 The user drags and drops a preconfigured VAV control

sequence from the Buildings library.
3 The user clicks on the pre-configured VAV control se-

quence and selects in the tool a function that will store
the sequence in the project library to allow further editing.

4 The controls design tool saves the sequence in the project
library.

5 The user connects sensors and actuators of the plant
model to control inputs and outputs of the controller
model.

6 The user opens the system model that is composed of
controls, HVAC system model and building envelope in
the controls design tool.

7 The user opens in the project library the composite se-
quence saved in step 4.

8 The user adds and connects additional control blocks from
the elementary CDL-block library.

9 The user selects “Check model” to verify that the imple-
mented sequence complies with the CDL specification.

Fig. 4.1 shows the sequence diagram for this use case.

4.1.3 Customizing and Configuring a Control Sequence for a Single-Zone VAV System

This use case describes how to customize and configure a control sequence for a single zone VAV system.

Use case name Customizing a control sequence for a single-zone VAV
system

Related Requirements n/a
continues on next page
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Table 4.3 – continued from previous page
Use case name Customizing a control sequence for a single-zone VAV

system
Goal in Context A mechanical engineer wants to customize a control se-

quence, starting with a template.
Preconditions A model of the plant (consisting of HVAC and building

model).
Preconfigured control sequence, stored in an
OpenBuildingControls-compatible library.
A set of performance requirements.

Successful End Condition Implemented single zone VAV sequence with customized
control, ready for performance assessment (Use case
Performance Assessment of a Control Sequence) and
ready for export in CDL.

Failed End Condition n/a
Primary Actors A mechanical engineer.
Secondary Actors The controls design tool with template control sequences

and a package with elementary CDL blocks.
The HVAC and controls library.

Trigger n/a
Main Flow Action
1 The user opens the controls design tool in OpenStudio.
2 The user opens the HVAC model and building model in

the controls design tool.
3 The user drags and drops a single-zone VAV control se-

quence from the Buildings library into the tool.
4 The user clicks on the pre-defined single-zone VAV control

sequence and selects a function that will store a copy of
the sequence in the project library to allow further editing.

5 The controls design tool stores a copy of the sequence in
the project library.

6 The user loads a copy of the sequence into the sequence
editor.

7 The user specifies the mapping of the control points to
HVAC system sensors and actuators, e.g. AHU

8 The user initiates the saving of the composite
HVAC+building+control model, for use as a refer-
ence model against which to compare alternative control
sequences

9 If necessary, the user executes the reference model and
inspects the resulting performance to identify potential
modifications

10 The user makes a copy of the sequence prior to replica-
tion and loads it into the sequence editor.

continues on next page
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Table 4.3 – continued from previous page
Use case name Customizing a control sequence for a single-zone VAV

system
11 The user edits the sequence by deleting and/or moving

elementary and composite blocks and/or adding control
blocks from the elementary CDL-block library

12 The user selects “Check model” to verify whether the im-
plemented sequence complies with the CDL specification,
editing and re-checking as necessary.

13 The user connects the modified sequence to the HVAC
system and building models, using Step 7, and saves the
resulting composite model

15 The user assesses the relative performance of the modi-
fied and unmodified sequences using the procedure de-
fined in the ‘Performance assessment of a control se-
quence’ use case below.

4.1.4 Customizing and Configuring a Control Sequence for a Multizone VAV System

This use case describes how to customize and configure a control sequence for a multizone VAV system.

Use case name Customizing a control sequence for a multi-zone VAV
system

Related Requirements n/a
Goal in Context A mechanical engineer wants to customize a control se-

quence, starting with a template.
Preconditions HVAC system model connected to building model. The

repeated elements in the HVAC system model (i.e. the
terminal boxes) must be tagged and numbered.
Preconfigured control sequence, stored in an
OpenBuildingControls-compatible library. The termi-
nal boxes control blocks must be tagged to indicate that
they can be replicated by a predefined function in the
editor.
A set of performance requirements.

Successful End Condition Implemented multi-zone VAV sequence with customized
control, ready for performance assessment (Use case
Performance Assessment of a Control Sequence) and
ready for export in CDL.

Failed End Condition n/a
Primary Actors A mechanical engineer.
Secondary Actors The controls design tool with template control sequences

and a package with elementary CDL blocks.
The HVAC and controls library.

continues on next page
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Table 4.4 – continued from previous page
Use case name Customizing a control sequence for a multi-zone VAV

system
Trigger n/a
Main Flow Action
1 The user opens the controls design tool in OpenStudio
2 The user opens the HVAC model and building model in

the controls design tool.
3 The user drags and drops a multi-zone VAV control se-

quence from the Buildings library into the tool
5 The user clicks on the pre-defined VAV control sequence

and selects a function that will store a copy of the se-
quence in the project library to allow further editing.

6 The controls design tool stores a copy of the sequence in
the project library.

7 The user loads a copy of the sequence into the sequence
editor.

8 The user specifies the number of zones (NZi) with each
type of terminal box and selects a function that will repli-
cate and instantiate sets of NZi terminal box control blocks
for each type of terminal box

9 The tool replicates and instantiates NZi terminal box con-
trol blocks of each type

10 The user initiates a tool function that maps zones with
specific types of terminal box to the corresponding ter-
minal box control blocks and then applies a user-defined
mapping of zone-level control points to terminal box sen-
sors and actuators and zone temperature and occupancy
sensors

11 The tool executes the actions described in Step 10
12 The user specifies the mapping of the remaining control

points to HVAC system sensors and actuators, e.g. AHU
13 The user initiates the saving of the composite

HVAC+building+control model, for use as a refer-
ence model against which to compare alternative control
sequences

14 If necessary, the user executes the reference model and
inspects the resulting performance to identify potential
modifications

15 The user makes a copy of the reference/library sequence
prior to replication and loads it into the sequence editor.

16 The user edits the sequence by deleting and/or moving
elementary and composite blocks and/or adding control
blocks from the elementary CDL-block library

continues on next page
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Table 4.4 – continued from previous page
Use case name Customizing a control sequence for a multi-zone VAV

system
17 The user selects “Check model” to verify whether the im-

plemented sequence complies with the CDL specification,
editing and re-checking as necessary.

18 The user connects the modified sequence to the HVAC
system and building models, using Steps 8-12, and saves
the resulting composite model

19 The user assesses the relative performance of the modi-
fied and unmodified sequences using the procedure de-
fined in the ‘Performance assessment of a control se-
quence’ use case below.

4.1.5 Performance Assessment of a Control Sequence

This use case describes how to assess the performance of a control sequence using the controls design tool.

Separate sequences are given below for the cases where local loop control is to be included in, or excluded from, the
evaluation.

Use case name Performance assessment of a control sequence
Related Requirements n/a
Goal in Context Evaluate the performance of a specific control sequence

in the context of a particular design project.
Preconditions Either a) whole building or system model for the particular

design project, or b) sufficient information about the cur-
rent state of the design, to enable the configuration of a
model template based on a generic design for the appro-
priate building type. The model must be complete down to
the required sensors and actuation points, which may be
actual actuators, if the sequence includes local loop con-
trol, or set-points for local loop control, if the sequence
only performs supervisory control.
Control sequence to be assessed must match, or be ca-
pable of being configured to match, the building/system
model in terms of sensing and actuation points and modes
of operation.
Relevant statutory requirements and design performance
targets. Performance metrics derived from these require-
ments and targets.

continues on next page
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Table 4.5 – continued from previous page
Use case name Performance assessment of a control sequence
Successful End Condition User is able to (i) compare the performance of different

control sequences in terms of selected pre-defined crite-
ria, and (ii) evaluate the ability of a selected control se-
quence to enable the building/system to meet or exceed
externally-defined performance criteria.

Failed End Condition Building/system model or configuration information for
generic model template is incomplete.
Performance requirements or targets are incomplete or in-
consistent wrt the specific control sequence
Simulation fails to run to completion or fails convergence
tests.

Primary Actors A mechanical engineer.
Secondary Actors
Trigger Need to select or improve a control sequence for a build-

ing or system.
Main Flow Action
1 User loads the building/system model for the project or

uses design information to configure a model template.
2 User selects and loads weather data and operation sched-

ules.
3 User configures control sequence with project-specific in-

formation, e.g. number of terminal units on an air loop,
and connects to building/system model.

3a If the sequence contains feedback loops that are to be in-
cluded in the evaluation, these loops must be tuned, either
automatically or manually.

4 User selects short periods for initial testing and performs
predefined tests to verify basic functionality, similar to
commissioning.

5 User initiates simulation of building/system controlled per-
formance over full reference year or statistically-selected
short reference year that reports output variables required
to evaluate performance according to pre-defined metrics.

6 User compares metric values to requirements and/or tar-
gets and determines whether the sequence is accept-
able as is, needs modification or appears fundamentally
flawed.

4.1.6 Defining Integration with non-HVAC Systems such as Lighting, Façade and Presence
Detection

This use case describe the connection of a facade control with the HVAC control in the control design tool.

12
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Fig. 4.1: Customizing a control sequence for a VAV system.
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Use case name Defining integration with non-HVAC systems such as
lighting, façade and presence detection

Related Requirements The model represents the non-HVAC systems and the as-
sociated control blocks are represented using CDL.

Goal in Context Integration actions between HVAC and non-HVAC sys-
tems can be defined using CDL.
Optional goal - Tool to also configures and verifies HVAC
to non-HVAC integration.

Preconditions Examples of HVAC and non-HVAC integrations available
for adaptation using CDL, non-HVAC systems can be
façade louvre control, lighting on/off or presence detec-
tion status.

Successful End Condition User able to use CDL to define common HVAC and non-
HVAC integrations

Failed End Condition Failure to include HVAC and façade/lighting/presence de-
tection interactions in CDL.

Primary Actors Mechanical Designer/Consultant
Secondary Actors
Trigger
Main Flow Action
1 User opens a menu of the non-HVAC systems for selec-

tion.
2 User selects the non-HVAC object and the visual block

diagram and associated CDL elements appear.
3 User clicks on a non-HVAC object and a menu of status

and actions pops up.
4 User selects the integration status or actions of the non-

HVAC system, and links it to HVAC system status or ac-
tion block

4.2 Bidding and BAS Implementation

4.2.1 Generate Control Point Schedule from Sequences

This use case describes how to generate control points from a sequence specification.

Use case name Generate control points schedule from sequences
Goal in Context The same control specification can be used to generate controls points schedule
Preconditions Each control points needs to be defined using AI/AO/DI/DO/Network interface types and consistent tagging/naming
Successful End Condition Control points schedule can be automatically produced by extracting from the sequences, including tagging (AHU/TDX/1), point name, point type and comments (such as differential pressure to be installed at 2/3 down index leg)
Failed End Condition Control points schedule is inaccurate or doesn’t contain sufficient information.
Primary Actors Mechanical Designer/Consultant
Secondary Actors Controls contractor

continues on next page
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Table 4.7 – continued from previous page
Use case name Generate control points schedule from sequences
Trigger
Main Flow Action
1 When a user adds a control point in the controls design tool, the tool provides default values and allows the user to change the values for tagging/point name/point type/comments
2 User clicks on a button to generate Points Schedule, an Excel file is then generated listing all the points and their details, and also counts the total number of different type of points.
3 User clicks on a button to generate a tag list of unique control devices within the project in Excel, so that the associated specification section can be extracted and populated within third party software.

4.3 Commissioning, Operation, and Maintenance

4.3.1 Conducting Verification Test of a VAV Cooling-Only Terminal Unit

This use case describes the verification of an installed control sequence relative to the design intent.

Use case name Conducting verification test of a VAV Cooling-Only
Terminal Unit

Related Requirements
Goal in Context A commissioning agent wants to verify on site that the

controller operates in accordance with the sequence of
operation

Preconditions CDL-conformant control sequence and verification tests
are imported into verification tool.
Field instrumentation is per spec.
Installation of field equipment is correct.
Point-to-point testing from point in field through to graphic
is correct.

Successful End Condition Control devices carry out the right sequence of actions,
and the verification tool verifies compliance with the de-
sign intent.
Control devices carry out wrong sequence of actions, and
the verification tool shows non-compliance with the design
intent.

Failed End Condition The verification tool fails to recognize verification suc-
cess/failure.

Primary Actors Commissioning agent
Secondary Actors BMS engineer (optional)

Vendor software which replicates uploaded CDL code
continues on next page
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Table 4.8 – continued from previous page
Use case name Conducting verification test of a VAV Cooling-Only

Terminal Unit
Trigger The verification tool is connected to the BMS and receives

the following signals from the VAV box controller:
• occupied mode, unoccupied mode
• Vmin, Vcool-max etc.
• setpoints and timers

The control parameters of the VAV box are configured and
the results are compared to the output of the CDL code in
the tool.

Main Flow 1 Automatic Control Functionality Checks
1 Set VAV box to unoccupied.
2 Set VAV box to occupied.
3 Continue through sequence, commissioning agent will get

a report of control actions and whether they were compli-
ant with the design intent.

Main Flow 2 Commissioning Override Checks
1 Force zone airflow setpoint to zero.
2 Force zone airflow setpoint to minimum flow.
3 Force damper full closed/open.
4 Reset request-hours accumulator point to zero (provide

one point for each reset type).

4.3.2 As-Built Sequence Generator

This use case will confirm that the installed control sequence is similar to the intended sequence.

Use case name As-Built Sequence Generator
Related Requirements Tool can translate sequence logic to controls programming logic. Below would do this in reverse.
Goal in Context An owner’s facilities engineer wishes to confirm the actual installed controls sequences in an existing building. This could be done as a Q/C step for new construction or to periodically document as-operating conditions.
Preconditions Installed control system must be capable of communication with the tool. Translation protocol must be established.
Successful End Condition
Failed End Condition
Primary Actors Owners facilities engineers
Secondary Actors Owners HVAC technicians, new construction project managers
Trigger Need for investigation of building performance. Or, periodic snap-shot documentation of as-installed controls sequences.
Main Flow Action
1 User opens tool interface.
2 User configures tool to connect with desired control system.
3 User initiates translation of installed control logic to sequence documentation.

16
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Chapter 5

Requirements

This section describes the functional, mathematical and software requirements. The requirements are currently in discus-
sion and revision with the team.

In these discussion, by plant , we mean the controlled system, which may be a chiller plant, an HVAC system, an active
facade, a model of the building etc.

5.1 Controls Design Tool

1. The controls design tool shall contain a library of predefined control sequences for HVAC primary systems, HVAC
secondary systems and active facades in a way that allows users to customize these sequences.

2. The controls design tool shall contain a library with functional and performance requirement tests that can be tested
during design and during commissioning.

3. The controls design tool shall allow users to add libraries of custom control sequences.
4. The controls design tool shall allow users to add libraries of custom functional and performance requirement tests.
5. The controls design tool shall allow testing energy, peak demand, energy cost, and comfort (for each instant of the

simulation) of control sequences when connected to a building system model.
6. The controls design tool shall allow users to test control sequences coupled to the equipment that constitutes their

HVAC system.
7. When the control sequences are coupled to plant models, the controls design tool shall allow users to tag the

thermofluid dependencies between different pieces of equipment in the object model. [For example, for any VAV
box, the user can define which AHU provides the airflow, which boiler (or system) provides the hot water for heating,
etc.]

8. The control design tool shall include templates for common objects.
9. A design engineer should be able to easily modify the library of predefined control sequences by adding or removing

blocks.
10. The controls design tool shall prompt the user to provide necessary information when instantiating objects. For

example, the object representing an air handler should include fan, filter, and optional coil and damper elements
(each of which is itself an object). When setting up an AHU instance, the user should be prompted to define which
of these objects exist.

11. To the extent feasible, the control design tool shall prevent mutually exclusive options in the description of the
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physical equipment. [For example, an air handler can have a dedicated minimum outside air intake, or it can have a
combined economizer/minimum OA intake, but it cannot have both.]

12. The controls design tool shall hide the complexity of the object model from the end user.
13. The controls design tool shall integrate with OpenStudio.
14. The controls design tool shall work on Windows, Linux Ubuntu and Mac OS X.
15. The controls design tool shall either run as a webtool (i.e. in a browser) or via a standalone executable that can be

installed including all its dependencies.

5.2 CDL

1. The CDL shall be declarative.
2. CDL shall be able to express control sequences and their linkage to an object model which represents the plant.
3. CDL shall represent control sequences as a set of blocks (see Section 7.5) with inputs and outputs through which

blocks can be connected.
4. It shall be possible to compose blocks hierarchically to form new blocks.
5. The elementary building blocks [such as a gain] are defined through their input, outputs, parameters, and their

response to given outputs. The actual implementation is not part of the standard [as this is language dependent].
6. Each block shall have tags that provide information about its general function/application [e.g. this is an AHU control

block] and its specific application [e.g. this particular block controls AHU 2].
7. It shall be possible to identify whether a block represents a physical sensor/actuator, or a logical signal source/sink.

[As this is used for pricing.]
8. Blocks and their inputs and outputs shall be allowed to contain metadata. The metadata shall identify expected

characteristics, including but not limited to the following. For inputs and outputs:
1. units,
2. a quantity [such as “return air temperature” or “heating requests” or “cooling requests”],
3. analog or digital input or output, and
4. for physical sensors or data input, the application (e.g. return air temperature, supply air temperature).

For blocks:
1. an equipment tag [e.g., air handler control],
2. a location [e.g., 1st-floor-office-south], and
3. if they represent a sensor or actuator, whether they are a physical device or a software point. [For physical

sensors, the signal is read by a sensor element, which converts the physical signal into a software point.]
9. It shall be possible to translate control sequences that are expressed in the CDL to implementation of major control

vendors.
10. It shall be possible to render CDL-compliant control sequences in a visual editor and in a textual editor.
11. CDL shall be a proper subset of Modelica 3.6 [Mod23]. [Section Control Description Language specifies what

subset shall be supported. This will allow visualizing, editing and simulating CDL with Modelica tools rather than
requiring a separate tool. It will also simplify the integration of CDL with the design and verification tools, since they
use Modelica.]

12. It shall be possible to simulate CDL-compliant control sequences in an open-source, freely available Modelica
environment.

13. It shall be possible to simulate CDL-compliant control sequences in the Spawn of EnergyPlus.
14. The object model must be rigorous, extensible and flexible.
15. Each distinct piece of equipment [e.g. VAV terminal box controller] shall be represented by a unique instance.
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5.3 Commissioning and Functional Verification Tool

1. The CDL tool shall import verification tests expressed in CDL, and a list of control points that are used for monitoring
and active functional testing.

2. The commissioning and functional verification tool shall be able to read data from, and send data to, BACnet,
possibly using a middleware such as VOLTTRON or the BCVTB, or read archived data.

3. It shall be possible to run the tool in batch mode as part of a real-time application that continuously monitors the
functional verification tests.

4. The commissioning and functional verification tool shall work on Windows, Linux Ubuntu and Mac OS X.
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Chapter 6

Software Architecture

This section describes the software architecture of the controls design tool and the functional verification tool. In the
text below, we mean by plant the HVAC and building system, and by control the controls other than product integrated
controllers (PIC). Thus, the HVAC or building system model may, and likely will, contain product integrated controllers,
which will be out of scope for CDL apart from reading measured values from PICs and sending setpoints to PICs.

Fig. 6.1: Overall software architecture.

Fig. 6.1 shows the overall system with the Controls Design Tool and the Functional Verification Tool. Both use a
CDL Parser which parses the CDL language. This parser is currently in development at https://github.com/lbl-srg/
modelica-json.1 The CDL parser reads a CDL-compliant Control Sequence, which may be provided by the user or taken
from https://simulationresearch.lbl.gov/modelica/releases/v10.0.0/help/Buildings_Controls_OBC_ASHRAE.html and the
CDL Library, see https://simulationresearch.lbl.gov/modelica/releases/v10.0.0/help/Buildings_Controls_OBC_CDL.html
All these components will be made available through OpenStudio. This allows using the OpenStudio model authoring and
simulation capability that is being developed for the Spawn of EnergyPlus (SOEP). See also https://www.energy.gov/eere/
buildings/articles/spawn-energyplus-spawn and its development site https://lbl-srg.github.io/soep/softwareArchitecture.
html.

1 Using a parser that only requires Java has the advantage that it can be used in other applications that may not have access to a OPTIMICA
installation.
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6.1 Controls Design Tool

Fig. 6.2: Overall software architecture of the Controls Design Tool.

Fig. 6.2 shows the overall software architecture of the controls design tool. The OpenStudio invokes a Modelica to json
parser which parses the Modelica libraries to json, and it invokes the HVAC/controls tool. The HVAC/controls tool reads
the json representation of the Modelica libraries that are used. The HVAC/controls tool updates the json reprensentation
of the model, and these changes will be merged into the Modelica model or Modelica package that has been edited. For
exporting the sequence for simulation or for operation, OpenStudio invokes OPTIMICA which generates an FMU of the
sequence, or multiple FMUs if the sequence is to be distributed to different field devices. The Building Operating System
then imports these FMUs.

If a Building Automation System prefers not to run FMUs to compute the control signals, then it could convert the json
format to a native implementation of the control sequence.

Optionally, to aid the user in customizing sequences, a Sequence Generator could be generated. This is currently not
shown in Fig. 6.2. The Sequence Generator will guide the user through a series of questions about the plant and control,
and then generates a Control Model that contains the open-loop control sequence. This Control Model uses the CDL
language, and can be stored in the Custom or Manufacturer Modelica Library. Using the HVAC/controls tool, the user will
then connect it to a plant model (which consist of the HVAC and building model with exposed control inputs and sensor
outputs). This connection will allow testing and modification of the Control Model as needed. Hence, using the Schematic
editor, the user can manipulate the sequence to adapt it to the actual project.
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How sequences can be exported to control systems is described in Section 11.

6.2 Functional Verification Tool

Fig. 6.3: Overall software architecture of the Functional Verification Tool.

The Functional Verification Tool consists of three modules:

• An I/O Configuration module that adds I/O information to the point list,
• a Engine that is used to conduct the actual verification, and
• a Viewer that displays the results of the verification.

The Functional Verification Tool uses that same CDL Parser as is used for the Controls Design Tool. The I/O Configuration
module will allow users (such as a commissioning agent) to update the point list. This is needed as not all point mappings
may be known during the design phase. The Engine invokes OPTIMICA to export an FMU-ME of the control blocks. As
OPTIMICA does not parse CDL information that is stored in vendor annotations (such as the point mapping), the Engine
will insert point lists into the Resources directory of the FMU-ME. To conduct the verification, the Engine will connect
to a HIL Module, such as Volttron or the BCVTB, and set up a closed loop model, using the point list from the FMU’s
Resources directory. During the verification, the Engine will write reports that are displayed by the Viewer.
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Chapter 7

Control Description Language

7.1 Introduction

This section specifies the Control Description Language (CDL), a declarative language that can be used to express control
sequences using block-diagrams. It is designed in such a way that it can be used to conveniently specify building control
sequences in a vendor-independent format, use them within whole building energy simulation, and translate them for use
in building control systems.

A key technical challenge encountered when developing CDL was that existing control product lines are heterogeneous.
They differ in their functionality for expressing control sequences, in their semantics of how control output gets updated,
and in their syntax which ranges from graphical languages to textual languages. Code generation for a variety of products
is common in the Electronic Design Automation industry. However, in the Electronic Design Automation industry, engineers
write models and controllers are built to conform to the models. If this were to be applied to the buildings industry, then
control providers would need to update their product line in order to be able to faithfully comply with the model. We think
such costly product line reconfigurations are not reasonable to expect in the next decade. Therefore, for the immediate
future, we will need to build digital models of control sequences that can conform to their implementation on target control
product lines; while ensuring that as new product lines are being developed, the manufacturers can invert the paradigm
and build controllers that conform to the models. We therefore selected the path of designing CDL in such a way that it
provide a minimum set of capabilities that can be expected to be supported by current control product lines, while allowing
future control product lines to directly use CDL for the implementation of the control sequences. As we have demonstrated
with one commercial product, the barrier to translate CDL to the programming language of a current control product line
is low.

To put CDL in context, and to introduce terminology, Fig. 7.1 shows the translation of CDL to a control product line or to
English language documentation. Input into the translation is CDL. An open-source tool called modelica-json translator
(see also Section 11.3 and https://github.com/lbl-srg/modelica-json) translates CDL to an intermediate format that we call
CDL-JSON. From CDL-JSON, further translations can be done to a control product line, or to generate point lists, English
language documentation or a semantic model of the control sequences. We anticipate that future control product lines
use directly CDL as shown in the right of Fig. 7.1. Such a translation can then be done using various existing Modelica
tools to generate code for real-time simulation.

The next sections give an overview and definition of the CDL language. A collection of control sequences that are com-
posed using the CDL language is described in Section 10. These sequences can be simulated with Modelica simulation
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Fig. 7.1: Translation of CDL to the CDL-JSON intermediate format and to a product line, a semantic model or English language
documentation.

environments. The translation of such sequences to control product lines using modelica-json, or other means of
translation, is described in Section 11.

7.2 Overview of CDL and Terminology

CDL is a declarative, modular language for expressing block diagrams that was introduced in [WGH18]. CDL allows
hierarchical modeling to encapsulate and reuse, through object instantiation, preconfigured control sequences. CDL also
defines syntax for connecting inputs and outputs of blocks and for propagating the values of parameters. CDL allows
users to declare new blocks, store them in a library, and instantiate them for use in a control sequence. CDL also has
annotations that declare how to graphically render the block diagrams, and to document control sequences.

CDL uses a small subset of the Modelica language that is needed for declaration of block diagrams. We selected Modelica
as it is an open standard, as it provides various open-source and commercial modeling and simulation environments, as
it allows to generate highly efficient code for simulation, and because it is increasingly used to simulate building energy
and control systems.

As the model of computation, CDL uses the synchronous data flow principle and single assignment rule, which is consis-
tent with the Modelica Language Specification [Mod23]. Therefore, all variables keep their value until the value is explicitly
changed, values are always present (and hence can be accessed at any time instant), computation and communication
at an event instant do not take time, and every input connector must be connected to exactly one output connector.

CDL consists of three types of blocks:

• Elementary blocks: These are built-in blocks that cannot be changed by users. All implementations of CDL need to
provide the functionality of these blocks. An example is a block that outputs the sum of two inputs.

• Composite blocks: These are blocks that are composed hierarchically using elementary blocks or other composite
blocks. Composite blocks can be used to declare control sequences, they can be stored in a library for reuse, and
they can be instantiated and configured for a particular energy system.

• Extension blocks: Extension blocks allow users to implement new blocks that may be difficult or impossible to
implement using the rules of composite blocks. For example, an extension block could be used to call a web
service, or to implement a finite state machine that rotates chillers in a chiller plant.

The functionality of elementary blocks, but not their implementation, is part of the CDL specification. Thus, in the most
general form, elementary blocks can be considered as functions that for given parameters p, time t and internal state x(t),
map inputs u(t) to new values for the outputs y (t) and states x ′(t), e.g., (p, t , u(t), x(t)) ↦→ (y (t), x ′(t)). By the composition
rules of composite blocks, composite blocks are also such functions. This abstraction is important as it allows to execute
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CDL sequences that are composed of composite blocks using a variety of programming languages, it guarantees that the
elementary and composite blocks have a well-defined scope and it guarantees that the calculations of a block have no
side effects on other blocks. This however is not necessarily true for extension blocks (for example, two extension blocks
could exchange data through a web service, thereby causing one block to have side effects on the behavior of the other
block). Thus, use of composite blocks is preferred. To execute extension blocks, extension blocks need to be compiled
and implemented using the Functional Mockup Interface Standard to provide run-time interoperability.

The CDL language consists of the following elements:

• A list of elementary blocks, such as a block that adds two signals and outputs the sum, or a block that represents a
PID controller.

• Connectors through which these blocks receive values and output values.
• Permissible data types.
• Syntax to specify

– how to instantiate these blocks and assign values of parameters, such as a proportional gain.
– how to connect inputs of blocks to outputs of other blocks.
– how to document blocks.
– how to add annotations such as for graphical rendering of blocks and their connections.
– how to specify composite blocks.
– how to add new blocks that go beyond the capabilities of composite blocks.

• A model of computation that describes when blocks are executed and when outputs are assigned to inputs.

Table 7.1 gives an overview of the terminology used to describe CDL.

25



OpenBuildingControl Control Description Language

Table 7.1: Main terminology used in CDL. For a more detailed definition,
follow the corresponding links.

Term Description
definition and
instantiation

We call the implementation of an object (such as a block or parameter) an object definition. To use
an object, one declares an instance of it.
For example, the statement

block myBlock
CDL.Reals.Sources.Constant c(k=1);

end myBlock;

is a block definition for myBlock, and the second line declares an instance of the block
CDL.Reals.Sources.Constant.

block A block is an object that has any number of constants, parameters, input connectors, output con-
nectors and instances of other blocks. Blocks typically encapsulate calculations. We distinguish
between elementary blocks, composite blocks and extension blocks.

elementary
block

An elementary block (Section 7.6) is a block that is part of the CDL library. Elementary blocks are
the basic language blocks and are not to be changed by users.

composite block A composite block (Section 7.12) is a block (and thus can have any number of constants, param-
eters, input connectors and output connectors) that instantiates any number of other elementary
blocks or composite blocks, and declares connections between inputs and outputs. Composite
blocks are used to implement control sequences.

extension block An extension block (Section 7.13) is a block that conforms in CDL to the Modelica definition of
a block (and thus can have textual equations, call C functions or functions in a dynamically linked
library). In CDL-json, the json specification declares its constants, parameters, input connectors and
output connectors, and it declares the file name of a Functional Mockup Unit for Model Exchange
that can be used to compute its outputs.

parameter A parameter (Section 7.4.2) is an instance of a native data type (such as a Real or Integer ) whose
value is time invariant, and hence its value cannot be changed based on an input signal. To change
its value when simulating a control logic, one would need to stop the simulation and change the
value. In an actual controller, one may change the value through a graphical user interface.

constant A constant (Section 7.4.3) is an instance of a native data type (such as a Real or Integer ) whose
value cannot be changed after compilation.

input (output)
connector

An input (output) connector (Section 7.8) is an object to which a connection can be made to transfer
a signal value into (out of) a block.

connection A connection (Section 7.10) is used to connect an input connector to an output connector, thereby
indicating that the value at the input connector is equal to the value at the output connector.

function A function (Section 7.7.2) is an object that can have any fixed number of arguments and returns
a scalar- or array-valued object, such as a Real number or an Integer array. Functions can be
used to assign values to constants and parameters, and to assign values to attributes of constants,
parameters, inputs and outputs.

annotation An annotation (Section 7.11) is a declaration that is used to store information about blocks, input
connectors, output connectors and parameters that does not affect the computations. Annotations
are used for example to store documentation, to provide a means to group related parameters of a
block so they can be shown next to each other in a graphical user interface, or to store semantic
information.
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7.3 Syntax

In order to use CDL with building energy simulation programs, and to not invent yet another language with new syntax,
the CDL syntax conforms to a subset of the Modelica Language Specification [Mod23]. The selected subset is needed
to instantiate classes, assign parameters, connect objects and document classes. This subset is fully compatible with
Modelica, e.g., no construct that violates the Modelica Standard has been added, thereby allowing users to view, modify
and simulate CDL-conformant control sequences with any Modelica-compliant simulation environment.

To simplify the support of CDL for tools and control systems, the following Modelica keywords are not supported in CDL
(except inside the extension blocks, Section 7.13):

1. inner and outer for instance hierarchy lookup
2. break for component deselection.

Also, the following Modelica language features are not supported in CDL, except inside extension blocks:

1. Clocks for clocked state machines [which are used in Modelica for hybrid system modeling].
2. algorithm sections for expressing sequences of statements [because the elementary blocks are black-box models

as far as CDL is concerned and thus CDL compliant tools do not parse the algorithm section.]
3. initial equation and initial algorithm sections for system initialization.

7.4 Permissible Data Types

7.4.1 Data Types

This section defines the basic data types. The definition is a subset of Modelica in which we left out attributes that are not
needed for CDL.

The attributes that are present in Modelica but not in CDL are marked with //--.

[Note the following: The start attribute is not needed in CDL because the start value of states is declared through a
parameter. The equation section has been removed because how to deal with variables that are out of limit should be
left to the implementation of the control system. ]

7.4.1.1 Real Type

The following is the predefined Real type:

type Real // Note: Defined with Modelica syntax although predefined
RealType value; // Accessed without dot-notation

parameter StringType quantity = "";

parameter StringType unit = "" "Unit used in equations";

parameter StringType displayUnit = "" "Default display unit";

parameter RealType min=-Inf, max=+Inf; // Inf denotes a large value

//-- parameter RealType start = 0; // Initial value

//-- parameter BooleanType fixed = true, // default for parameter/constant;

//-- = false; // default for other variables
(continues on next page)
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(continued from previous page)

parameter RealType nominal = 1; // Nominal value

parameter BooleanType unbounded = false; // For error control

//-- parameter StateSelect stateSelect = StateSelect.default;

//-- equation

//-- assert(value >= min and value <= max, "Variable value out of limit");

end Real;

Real Type/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.

The quantity attribute is optional, can take on the following values:

• "", which is the default, is considered as no quantity being specified.
• Angle for area (such as used for sun position).
• Area for area.
• Energy for energy.
• Frequency for frequency.
• Illuminance for illuminance.
• Irradiance for solar irradiance.
• MassFlowRate for mass flow rate.
• MassFraction for mass fraction.
• Power for power.
• PowerFactor for power factor.
• Pressure for absolute pressure.
• PressureDifference for pressure difference.
• SpecificEnergy for specific energy.
• TemperatureDifference for temperature difference.
• Time for time.
• ThermodynamicTemperature for absolute temperature.
• Velocity for velocity.
• VolumeFlowRate for volume flow rate.

[These quantities are compatible with the quantities used in the Modelica Standard Library, to allow connecting CDL
models to Modelica models, see also Section 7.10.]

[The quantity attribute could be used for example to declare in a sequence that a real signal is a AbsolutePressure.
This could be used to aid connecting signals or filtering data. Quantities serve a different purpose than tagged properties
(Section 7.17.2).]

The value of displayUnit is used as a recommendation for how to display units to the user. [For example, tools that
implement CDL may convert the value from unit to displayUnit before showing it in a GUI or a log file. Moreover, tools
may have a global list where users can specify, for example, to display degC and K in degF.]

The nominal attribute is meant to be used for scaling purposes and to define tolerances, such as for integrators, in relative
terms.

7.4.1.2 Integer Type

The following is the predefined Integer type:

28



OpenBuildingControl Control Description Language

type Integer // Note: Defined with Modelica syntax although predefined
IntegerType value; // Accessed without dot-notation

//-- parameter StringType quantity = "";

parameter IntegerType min=-Inf, max=+Inf;

//-- parameter IntegerType start = 0; // Initial value

//-- parameter BooleanType fixed = true, // default for parameter/constant;

//-- = false; // default for other variables

//-- equation

//-- assert(value >= min and value <= max, "Variable value out of limit");

end Integer;

The minimal recommended number range for IntegerType is from −2147483648 to +2147483647, corresponding to a
two’s-complement 32-bit integer implementation.

[The quantity attribute could be used for example to declare in a sequence that a integer signal is a
NumberOfHeatingRequest. This could be used to aid connecting signals or filtering data.]

7.4.1.3 Boolean Type

The following is the predefined Boolean type:

type Boolean // Note: Defined with Modelica syntax although predefined
BooleanType value; // Accessed without dot-notation

//-- parameter StringType quantity = "";

//-- parameter BooleanType start = false; // Initial value

//-- parameter BooleanType fixed = true, // default for parameter/constant;

//-- = false, // default for other variables

end Boolean;

[The quantity attribute could be used for example to declare in a sequence that a boolean signal is a ChillerOn

command.]

7.4.1.4 String Type

The following is the predefined String type:

type String // Note: Defined with Modelica syntax although predefined
StringType value; // Accessed without dot-notation

//-- parameter StringType quantity = "";

//-- parameter StringType start = ""; // Initial value

//-- parameter BooleanType fixed = true, // default for parameter/constant;

//-- = false, // default for other variables

end String;
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7.4.1.5 Enumeration Types

A declaration of the form

type E = enumeration([enumList]);

defines an enumeration type E and the associated enumeration literals of the enumList. The enumeration literals shall
be distinct within the enumeration type. The names of the enumeration literals are defined inside the scope of E. Each
enumeration literal in the enumList has type E.

[Example:

type SimpleController = enumeration(P, PI, PD, PID);

parameter SimpleController = SimpleController.P;

]

An optional comment string can be specified with each enumeration literal.

[Example:

type SimpleController = enumeration(

P "P controller",

PI "PI controller",

PD "PD controller",

PID "PID controller")

"Enumeration defining P, PI, PD, or PID simple controller type";

]

[Enumerations can for example be used to declare a list of mode of operations, such as on, off, startUp, coolDown.]

7.4.2 Parameters

A parameter is a value that does not change as time progresses, except through stopping the executation of the control
sequence, setting a new value through a user interaction or an API, and restarting the execution. In other words, the
value of a parameter cannot be changed through an input connector (Section 7.8). Parameters are declared with the
parameter prefix.

[For example, to declare a proportional gain, use

parameter Real k(min=0) = 1 "Proportional gain of controller";

]

7.4.3 Constants

A constant is a value that is fixed at compilation time. Constants are declared with the constant prefix.
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[For example,

constant Real pi = 3.14159;

]

7.4.4 Arrays

Each of these data types, including the elementary blocks, composite blocks, extension blocks and connectors, can be
a single instance, one-dimensional array or two-dimensional array (matrix). Array indices shall be of type Integer only.
The first element of an array has index 1. An array of size 0 is an empty array.

Values of arrays may be declared using

• the notation {x1, x2, ...}, for example parameter Integer k[3,2] = {{1, 2}, {3, 4}, {5, 6}},
• one or several iterators, for example parameter Real k[2,3] = {i*0.5+j for i in 1:3, j in 1:2},
• a fill or cat function, see Section 7.7.1.

[For example, to following declarations all assign the array {1, 2, 3} to parameters:

parameter Real k1[3] = {1, 2, 3};

parameter Real k2[3] = {i for i in 1:3};

parameter Real k3[3] = k1;

parameter Real k4[3] = fill(1, 3) + {0, 1, 2};

parameter Real k5[3] = cat(1, {1}, {2}, {3});

The following declaration instantiates two blocks, and sets the value of the parameter k to 2 and 3:

MultiplyByParameter mul[2](k={2, 3});

]

The size of arrays will be fixed at translation. It cannot be changed during run-time.

[enumeration or Boolean data types are not permitted as array indices.]

See the Modelica 3.6 specification Chapter 10 for array notation and these functions.

7.5 Encapsulation of Functionality

All computations are encapsulated in a block. Blocks expose parameters (used to configure the block, such as a control
gain), and they expose inputs and outputs using connectors.

Blocks are either elementary blocks (Section 7.6) or composite blocks (Section 7.12).
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Fig. 7.2: Screenshot of CDL library.

7.6 Elementary Blocks

The CDL library contains elementary blocks that are used to compose control sequences. The functionality of elementary
blocks, but not their implementation, is part of the CDL specification. Thus, in the most general form, elementary blocks
can be considered as functions that for given parameters p, time t and internal states x(t), map inputs u(t) to new outputs
y (t), e.g.,

(p, t , u(t), x(t)) ↦→ y (t).

Control providers who support CDL need to be able to implement the same functionality as is provided by the elementary
CDL blocks.

[CDL implementations are allowed to use a different implementation of the elementary blocks, because the implementation
is language specific. However, implementations shall have the same inputs, outputs and parameters, and they shall
compute the same response for the same value of inputs and state variables.]

Users are not allowed to add new elementary blocks. Rather, users can use the existing elementary blocks to implement
composite blocks (Section 7.12).

Note: The elementary blocks can be browsed in any of these ways:

• Open a web browser at https://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_
CDL.html.

• Download https://github.com/lbl-srg/modelica-buildings/archive/master.zip, unzip the file, and open Buildings/

package.mo in the graphical model editor of OpenModelica, Impact, or Dymola. All models in the Examples and
Validation packages can be simulated with these tools.
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An actual implementation of an elementary block looks as follows, where we omitted the annotations that are used for
graphical rendering:

block AddParameter "Output the sum of an input plus a parameter"

parameter Real p "Value to be added";

Interfaces.RealInput u "Connector of Real input signal";

Interfaces.RealOutput y "Connector of Real output signal";

equation
y = u + p;

annotation(Documentation(info("
<html>
<p>
Block that outputs <code>y = u + p</code>,
where <code>p</code> is parameter and <code>u</code> is an input.

</p>
</html>"));

end AddParameter;

For the complete implementation, see the github repository.

7.7 Instantiation

7.7.1 Parameter Declaration and Assigning of Values to Parameters

Parameters are values that do not depend on time. The values of parameters can be changed during run-time through a
user interaction with the control program (such as to change a control gain), unless a parameter is a structural parameter .

The declaration of parameters and their values is identical to Modelica, but we limit the type of expressions that are
allowed in such assignments. In particular, for Boolean parameters, we allow expressions involving and, or and not and
the function fill(..) in Table 7.2. For Real and Integer, expressions are allowed that involve

• the basic arithmetic functions +, -, *, -,
• the relations >, >=, <, <=, ==, <>,
• calls to the functions listed in Table 7.2.

[For example, to instantiate a block that multiplies its input by a parameter, one would write

CDL.Reals.MultiplyByParameter gai(k=-1) "Constant gain of -1" annotation(...);

where the documentation string is optional. The annotation is typically used for the graphical positioning of the instance
in a block diagram.]
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7.7.2 Functions

CDL provide built-in functions that can be used when assigning values of parameters and attributes of constants, param-
eters, inputs, and outputs. Table 7.2 lists the supported functions.

Table 7.2: Functions that are allowed in parameter assignments. The func-
tions are consistent with Modelica 3.6.

Function Description
abs(v) Absolute value of v.
sign(v) Returns if v>0 then 1 else if v<0 then –1 else 0.
sqrt(v) Returns the square root of v if v >=0, or an error otherwise.
div(x, y) Returns the algebraic quotient x/y with any fractional part discarded (also known as truncation

toward zero). [Note: this is defined for / in C99; in C89 the result for negative numbers is
implementation-defined, so the standard function div() must be used.]. Result and arguments
shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise it
is Integer.

mod(x, y) Returns the integer modulus of x/y , i.e. mod(x,y)=x-floor(x/y)*y. Result and arguments shall
have type Real or Integer. If either of the arguments is Real the result is Real otherwise it is
Integer.
[Examples are mod(3,1.4)=0.2, mod(-3,1.4)=1.2 and mod(3,-1.4)=-1.2.]

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y) = x. Result and ar-
guments shall have type Real or Integer. If either of the arguments is Real the result is Real

otherwise it is Integer.
[Examples are rem(3,1.4)=0.2 and rem(-3,1.4)=-0.2.]

ceil(x) Returns the smallest integer not less than x. Result and argument shall have type Real.
floor(x) Returns the largest integer not greater than x. Result and argument shall have type Real.
integer(x) Returns the largest integer not greater than x. The argument shall have type Real. The result has

type Integer.
min(A) Returns the least element of array expression A.
min(x, y) Returns the least element of the scalars x and y.
max(A) Returns the greatest element of array expression A.
max(x, y) Returns the greatest element of the scalars x and y.
sum(...) The expression sum( e(i, ..., j) for i in u, ..., j in v) returns the sum of the expres-

sion e(i, ..., j) evaluated for all combinations of i in u, ..., j in v: e(u[1], ... ,

v[1]) + e(u[2], ... ,v[1])+... +e(u[end],... ,v[1])+...+e(u[end],... ,v[end])

The type of sum(e(i, ..., j) for i in u, ..., j in v) is the same as the type of e(i,..
.j).

fill(s, n1,

n2, ...)

Returns the n1 × n2 × n3 × ... array with all elements equal to scalar or array expression s (ni ≥ 0).
The returned array has the same type as s.
Recursive definition: fill(s, n1, n2, n3, ...) = fill( fill(s, n2, n3, ...), n1);,
fill(s,n)={s, s, ..., s}

The function needs two or more arguments; that is fill(s) is not legal.
size(...) Returns dimensions of an array. For 1 ≤ i ≤ n, where n is the number of dimensions in A,

the expression size(A,i) returns the size of dimension i of array expression A. The expression
size(A) returns a vector of length n containing the dimension sizes of A. [Examples are size([1,

2, 3; 3, -4, 5], 1)=2 and size([1, 2, 3; 3, -4, 5])={2,3}.]
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[For example, if a controller has a parameter for the set point for the outdoor air flow rate of ten (equally sized) zones that
needs to be set to 0.1 m3/s, a declaration may look like:

parameter Real VSet_flow[10](

final unit=fill("m3/s", 10)) = fill(0.1, 10);

]

7.7.3 Evaluation of Assignment of Values to Parameters

Using expressions in parameter assignments, and propagating values of parameters in a hierarchical formulation of a
control sequence, are convenient language constructs to express relations between parameters. However, most of today’s
building control product lines do not support propagation of parameter values and evaluation of expressions in parameter
assignments. For CDL to be compatible with this limitation, the modelica-json translator has optional flags, described
below, that trigger the evaluation of propagated parameters, and that evaluate expressions that involve parameters.

CDL also has a keyword called final that prevents a declaration from being changed by the user. This can be used in
a hierarchical controller to ensure that parameter values are propagated to lower level controller in such a way that users
can only change their value at the top-level location. It can also be used in CDL to enforce that different instances of blocks
have the same parameter value. For example, if a controller samples two signals, then final could be used to ensure
that they sample at the same rate. However, most of today’s building control product lines do not support such a language
construct. Therefore, while the CDL translator preserves the final keyword in the CDL-JSON format, a translator from
CDL-JSON to a control product line is allowed to ignore this declaration.

Note: People who implement control sequences that require that values of parameters are identical among multiple
instances of blocks must use blocks that take these values as an input, rather than rely on the final keyword. This could
be done as explained in these two examples:

Example 1: If a controller has two samplers called sam1 and sam2 and their parameter samplePeriod must satisfy
sam1.samplePeriod = sam2.samplePeriod for the logic to work correctly, then the controller can be implemented us-
ing CDL.Logical.Sources.SampleTrigger and connect its output to two instances of CDL.Discrete.TriggeredSampler that
sample the corresponding signals.

Example 2: If a controller normalized two input signals by dividing it by a gain k1, then rather than us-
ing two instances of CDL.Reals.MultiplyByParameter with parameter k = 1/k1, one could use a constant source
CDL.Reals.Sources.Constant with parameter k=k1 and two instances of CDL.Reals.Divide, and then connect the out-
put of the constant source with the inputs of the division blocks.

We will now describe how assignments of values to parameters can optionally be evaluated by the CDL translator. While
such an evaluation is not preferred, it is allowed in CDL to accommodate the situation that most building control product
lines, in contrast to modeling tools such as Modelica, Simulink or LabVIEW, do not support the propagation of parameters,
nor do they support the use of expressions in parameter assignments.

Consider the statement

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";

(continues on next page)
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CDL.Reals.Sources.Constant con(

k = pRel) "Block producing constant output";

CDL.Logical.Hysteresis hys(

uLow = pRel-25,

uHigh = pRel+25) "Hysteresis for fan control";

Some building control product lines will need to evaluate this at translation because they cannot propagate parameters
and/or cannot evaluate expressions.

To lower the barrier for the development of a CDL translator to a control product line, the modelica-json translator
has two flags. One flag, called evaluatePropagatedParameters will cause the translator to evaluate the propagated
parameter, leading to a CDL-JSON declaration that is equivalent to the declaration

CDL.Reals.Sources.Constant con(

k(unit="Pa") = 50) "Block producing constant output";

CDL.Logical.Hysteresis hys(

uLow = 50-25,

uHigh = 50+25) "Hysteresis for fan control";

Note
1. the parameter Real pRel(unit="Pa") = 50 has been removed as it is no longer used anywhere.
2. the parameter con.k has now the unit attribute set as this information would otherwise be lost.
3. the parameter hys.uLow has the unit not set because the assignment involves an expression. As expressions

can be used to convert a value to a different unit, the unit will not be propagated if the assignment involves an
expression.

Another flag called evaluateExpressions will cause all mathematical expressions to be evaluated, leading to a CDL-
JSON declaration that is equivalent to the CDL declaration

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";

CDL.Reals.Sources.Constant con(

k = pRel) "Block producing constant output";

CDL.Logical.Hysteresis hys(

uLow = 25,

uHigh = 75) "Hysteresis for fan control";

If both evaluatePropagatedParameters and evaluateExpressions are set, the result would be equivalent of the
declaration

CDL.Reals.Sources.Constant con(

k(unit="Pa") = 50) "Block producing constant output";

CDL.Logical.Hysteresis hys(

uLow = 25,

uHigh = 75) "Hysteresis for fan control";

Clearly, use of these flags is not preferred, but they have been introduced to accomodate the capabilities that are present
in most of today’s building control product lines.
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Note: A commonly used construct in control sequences is to declare a parameter and then use the parameter once to
assign the value of a block in this sequences. In CDL, this construct looks like

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";

CDL.Reals.Sources.Constant con(k = pRel) "Block producing constant output";

Note that the English language sequence description would typically refer to the parameter pRel. If this is evaluated
during translation due to the evaluatePropagatedParameters flag, then pRel would be removed as it is no longer used.
Hence, such a translation should then rename the block con to pRel, e.g., it should produce a sequence that is equivalent
to the CDL declaration

CDL.Reals.Sources.Constant pRel(k = 50) "Block producing constant output";

In this way, references in the English language sequence to pRel are still valid.

7.7.4 Conditionally Removing Instances

Instances can be conditionally removed by using an if clause.

This allows, for example, to have an implementation of a controller that optionally takes as an input the number of occu-
pants in a zone.

An example code snippet is

parameter Boolean have_occSen=false
"Set to true if zones have occupancy sensor";

CDL.Interfaces.IntegerInput nOcc if have_occSen

"Number of occupants"

annotation (__cdl(default = 0));

CDL.Reals.MultiplyByParameter gai(

k = VOutPerPer_flow) if have_occSen

"Outdoor air per person";

equation
connect(nOcc, gai.u);

By the Modelica language definition, all connections (Section 7.10) to nOcc will be removed if have_occSen = false.

Some building automation systems do not allow to conditionally removing instances of blocks, inputs and outputs, and their
connections. Rather, these instances are always present, and a value for the input must be present. To accomodate this
case, every input connector that can be conditionally removed can declare a default value of the form __cdl(default =

value), where value is the default value that will be used if the building automation system does not support conditionally
removing instances. The type of value must be the same as the type of the connector. For Boolean connectors, the
allowed values are true and false.

If the __cdl(default = value) annotation is absent, then the following values are assumed as default:
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• For RealInput, the default values are:
– If unit=K: If quantity="TemperatureDifference", the default is 0 K, otherwise it is 293.15 K.
– If unit=Pa: If quantity="PressureDifference", the default is 0 Pa, otherwise it is 101325 Pa.
– For all other units, the default value is 0.

• For IntegerInput, the default value is 0.
• For BooleanInput, the default value is false.

Note that output connectors must not have a specification of a default value, because if a building automation system
cannot conditionally remove instances, then the block (or input connector) upstream of the output will always be present
(or will have a default value).

7.7.5 Point list

From CDL-conforming sequences, point lists can be generated. [This could be accomplished using the modelica-json

tool, see Fig. 7.1.]

For point lists,

• the connectors RealInput and IntegerInput are analog inputs.
• the connectors RealOutput and IntegerOutput are analog outputs.
• the connectors BooleanInput and BooleanOutput are digital inputs and outputs.

7.7.5.1 Annotations that Cause Point Lists to be Generated

The vendor annotation __cdl(generatePointlist=Boolean, controlledDevice=String) at the class level specifies
that a point list of the sequence is generated. If not specified, it is assumed that __cdl(generatePointlist=false).
The key controlledDevice is optional. It can be used to list the device that is being controlled. Its value will be written
to the point list, but not used otherwise, see Table 7.3 for an example.

When instantiating a block, the __cdl(generatePointlist=Boolean) annotation can also be added to the instantiation
clause, and it will override the class level declaration.

[For example,

block A
MyController con1;

MyController con2 annotation(__cdl(generatePointlist=false));
annotation(__cdl(generatePointlist=true));

end A;

generates a point list for A.con1 only, while

block A
MyController con1;

MyController con2 annotation(__cdl(generatePointlist=true));
annotation(__cdl(generatePointlist=false));

end A;
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generates a point list for A.con2 only.]

The generatePointlist annotation can be propagated down in a composite block (see Section 7.12) by specifying in
the instantiation clause the annotation

__cdl(propagate(instance="subCon1", generatePointlist=true))

Controllers deeper in the hierarchy are referred to using the dot notation, such as in instance="subCon1.subSubCon1"

where subSubCon1 is an instance of an elementary or composite block in subCon1.

The value of instance= must be an elementary block (see Section 7.6) or a composite block (see Section 7.12). It must
declared, but it can be conditionally removed (see Section 7.7.4), in which case the declaration can safely be ignored.

Higher-level declarations override lower-level declarations.

[For example, assume con1 has a block called subCon1. Then, the declaration

MyController con1 annotation(__cdl(propagate(instance="subCon1", generatePointlist=true)));

sets generatePointlist=true in the instance con1.subCon1.]

There can be any number of propagate(...) annotations for a controller. [Specifying multiple propagate(...) anno-
tations is useful for composite controllers. For example,

MyController con1 annotation(
__cdl(

propagate(instance="subCon1", generatePointlist=true),
propagate(instance="subCon1.subSubCon1", generatePointlist=true),
propagate(instance="subCon1.subSubCon2", generatePointlist=false)

)

);

allows a fine grained propagation to individual blocks of a composite block. ]

7.7.5.2 Annotations for Connectors

Connectors (see Section 7.8) can have a vendor annotation of the form

__cdl(connection(hardwired=Boolean))

The field hardwired specifies whether the connection should be hardwired or not, the default value is false.

Connectors can also have a vendor annotation of the form

__cdl(trend(interval=Real, enable=Boolean))

The field interval must be specified and its value is the trending interval in seconds. The field enable is optional, with
default value of true, and it can be used to overwrite the value used in the sequence declaration.

Similar to generatePointlist, the connection and trend annotations can be propagated. If a composite block contains
a block con1, which in turn contains a block subCon1 that has an input u, the declaration
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MyController con1 annotation(
__cdl(propagate(instance="subCon1.u", connection(hardwired=Boolean)));

can be used to set the type of connection of input (or output) con1.subCon1.u. The value assigned to instance must be
the instance name of a connector.

Similarly, the declaration

MyController con1 annotation(
__cdl(propagate(instance="subCon1.u", trend(interval=Real, enable=Boolean)));

can be used to set how to trend that input (or output).

These statements can also be combined into

MyController con1 annotation(
__cdl(propagate(instance="subCon1.u", connection(hardwired=Boolean),

trend(interval=Real, enable=Boolean)));

As in Section 7.7.5.1,

• the value assigned to instance must be the name of an instance that exist, (but it can be conditionally removed in
which case the annotation can be ignored),

• higher-level declarations override lower-level declarations, and
• any number of propagate(...) annotations can be present.

[For example, consider the pseudo-code

block Controller

Interfaces.RealInput u1

annotation(__cdl(connection(hardwired=true), trend(interval=60, enable=true)));
Interfaces.RealInput u2

annotation(__cdl(connection(hardwired=false),
trend(interval=120, enable=true),
propagate(instance="con1.u1",

connection(hardwired=false),
trend(interval=120, enable=true))));

MyController con1 annotation(__cdl(generatePointlist=true));
MyController con2 annotation(__cdl(generatePointlist=false,

propagate(instance="subCon1", generatePointlist=true),
propagate(instance="subCon2", generatePointlist=true)));

equation
connect(u1, con1.u1);

connect(u2, con1.u2);

connect(u1, con2.u1);

connect(u2, con2.u2);
(continues on next page)
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annotation(__cdl(generatePointlist=true));
end Controller;

...

block MyController
Interfaces.RealInput u1

annotation(__cdl(connection(hardwired=false), trend(interval=120, enable=true)));
Interfaces.RealInput u2

annotation(__cdl(connection(hardwired=true), trend(interval=60, enable=true)));
...

SubController1 subCon1;

SubController2 subCon2;

...

annotation(__cdl(generatePointlist=true));
end MyController;

The translator will generate an annotation propagation list as shown below. There will be point list for
Controller, Controller.con1, Controller.con2.subCon1 and Controller.con2.subCon1. Also, the an-
notation connection(hardwired=true), trend(interval=60, enable=true) of con1.u2 will be overridden as
connection(hardwired=false), trend(interval=120, enable=true).

[

{

"className": "Controller",

"points": [

{

"name": "u1",

"hardwired": true,
"trend": {

"enable": true,
"interval": 60

}

},

{

"name": "u2",

"hardwired": false,
"trend": {

"enable": true,
"interval": 120

}

}

]

},
(continues on next page)
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{

"className": "Controller.con1",

"points": [

{

"name": "u1",

"hardwired": false,
"trend": {

"enable": true,
"interval": 120

}

},

{

"name": "u2",

"hardwired": false,
"trend": {

"enable": true,
"interval": 120

}

}

]

},

{

"className": "Controller.con2.subCon1",

"points": [

...

]

},

{

"className": "Controller.con2.subCon2",

"points": [

...

]

}

]

]

[For an example of a point list generation, consider the pseudo-code shown below.

within Buildings.Controls.OBC.ASHRAE.G36G36.TerminalUnits.Reheat
block Controller "Controller for room VAV box with reheat"

...;

CDL.Interfaces.BooleanInput uWin "Windows status"

annotation (__cdl(connection(hardwired=true),
trend(interval=60, enable=true)));

CDL.Interfaces.RealOutput yVal "Signal for heating coil valve"
(continues on next page)
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annotation (__cdl(connection(hardwired=false),
trend(interval=60, enable=true)));

...

annotation (__cdl(generatePointlist=true, controlledDevice="Terminal unit"));

It specifies that a point list should be generated for the sequence that controls the system or equipment specified by
controlledDevice, that uWin is a digital input point that is hardwired, and that yVal is an analog output point that is not
hardwired. Both of them can be trended with a time interval of 1 minute. The point list table will look as shown in Table
7.3.

Table 7.3: Sample point list table generated by the modelica-json tool.

System/Equipment Name Type Hardwired? Trend [s] Description
Terminal unit uWin DI Yes 60 Windows status
Terminal unit yVal AO No 60 Signal for heating coil valve
. . . . . . . . . . . . . . . . . .

]

7.8 Connectors

Blocks expose their inputs and outputs through input and output connectors.

The permissible connectors are implemented in the package CDL.Interfaces, and are BooleanInput, BooleanOutput,
IntegerInput, IntegerOutput, RealInput and RealOutput.

Connectors must be in a public section.

Connectors can carry scalar variables, vectors or arrays of values (each having the same data type). For arrays, the
connectors need to be explicitly declared as an array.

[ For example, to declare an array of nin input signals, use

parameter Integer nin(min=1) "Number of inputs";

Interfaces.RealInput u[nin] "Connector for 2 Real input signals";

]

Note: In general, today’s building control product lines only support scalar variables on graphical connections. This leads
to the situation that different control sequences need to be implemented for any combination of equipment. For example,
if only scalars are allowed in connections, then a chiller plant with two chillers needs a different sequence than a chiller
plant with three chillers. With vectors, however, one sequence can be implemented for chiller plants with any number of
chillers. This is currently done when implementing sequences from ASHRAE RP-1711 in CDL.

If control product lines do not support vectors on connections, then during translation from CDL to the control product line,
the vectors (or arrays) can be flattened. For example, blocks of the form
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parameter Integer n = 2 "Number of blocks";

CDL.Reals.Sources.Constant con[n](k={1, 2});

CDL.Reals.MultiSum mulSum(nin=n); // multiSum that contains an input connector u[nin]

equation
connect(con.y, mulSum.u);

could be translated to the equivalent of

CDL.Reals.Sources.Constant con_1(k=1);

CDL.Reals.Sources.Constant con_2(k=1);

CDL.Reals.MultiSum mulSum(nin=2);

equation
connect(con_1.y, mulSum.u_1);

connect(con_2.y, mulSum.u_2);

E.g., two instances of CDL.Reals.Sources.Constant are used, the vectorized input mulSum.u[2] is flattened to two
inputs, and two separate connections are instantiated. This will preserve the control logic, but the components will need
to be graphically rearranged after translation.

7.9 Equations

After the instantiations (Section 7.7), a keyword equation must be present to introduce the equation section. The equation
section can only contain connections (Section 7.10) and annotations (Section 7.11).

Unlike in Modelica, an equation section shall not contain equations such as y=2*u; or commands such as for, if,
while and when.

Furthermore, unlike in Modelica, there shall not be an initial equation, initial algorithm or algorithm section.
(They can however be part of a elementary block.)

7.10 Connections

Connections connect input to output connector (Section 7.8). For scalar connectors, each input connector of a block
needs to be connected to exactly one output connector of a block. For vectorized connectors, or vectorized instances
with scalar connectors, each (element of an) input connector needs to be connected to exactly one (element of an) output
connector.

Connections are listed after the instantiation of the blocks in an equation section. The syntax is

connect(port_a, port_b) annotation(...);

where annotation(...) is used to declare the graphical rendering of the connection (see Section 7.11). The order of
the connections and the order of the arguments in the connect statement does not matter.

[For example, to connect an input u of an instance gain to the output y of an instance maxValue, one would declare
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CDL.Reals.Max maxValue "Output maximum value";

CDL.Reals.MultiplyByParameter gain(k=60) "Gain";

equation
connect(gain.u, maxValue.y);

]

Only connectors that carry the same data type (Section 7.4.1) can be connected.

Attributes of the variables that are connected are handled as follows:

• If the quantity, unit, min or max attributes are set to a non-default value for both connector variables, then they
must be equal.

• If only one of the two connector variables declares the quantity, unit, min or max attribute, then this value is
applied to both connector variables.

• If two connectors have different values for the displayUnit attribute, then either can be used. [It is a quality of the
implementation that a warning is issued if declarations are inconsistent. However, because displayUnit does not
affect the computations in the sequence, the connection is still valid.]

[For example,

Reals.Max maxValue(y(unit="m/s")) "Output maximum value";

Reals.MultiplyByParameter gain( k=60) "Gain";

Reals.MultiplyByParameter gainOK( u(unit="m/s" ), k=60) "Gain";

Reals.MultiplyByParameter gainWrong(u(unit="kg/s"), k=60) "Gain";

equation
connect(gain.u, maxValue.y); // This sets gain.u(unit="m/s")

// as gain.u does not declare its unit

connect(gainOK.u, maxValue.y); // Correct, because unit attributes are consistent

connect(gainWrong.u, maxValue.y); // Not allowed, because of inconsistent unit attributes

]

Signals shall be connected using a connect statement; assigning the value of a signal in the instantiation of the output
connector is not allowed.

[This ensures that all control sequences are expressed as block diagrams. For example, the following model is valid

block MyAdderValid
Interfaces.RealInput u1;

RealInput u2;

Interfaces.RealOutput y;

Reals.Add add;

equation
connect(add.u1, u1);

connect(add.u2, u2);

connect(add.y, y);

end MyAdderValid;
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whereas the following implementation is not valid in CDL, although it is valid in Modelica

block MyAdderInvalid
Interfaces.RealInput u1;

Interfaces.RealInput u2;

Interfaces.RealOutput y = u1 + u2; // not allowed

end MyAdderInvalid;

]

7.11 Annotations

Annotations follow the same rules as described in the following Modelica 3.6 Specifications

• 18.2 Annotations for Documentation
• 18.6 Annotations for Graphical Objects, with the exception of

– 18.6.7 User input
• 18.8 Annotations for Version Handling

[For CDL, annotations are primarily used to graphically visualize block layouts, graphically visualize input and output signal
connections, and to declare vendor annotations, (Sec. 18.1 in Modelica 3.6 Specification), such as to specify default value
of connector as below.]

CDL also uses annotations to declare default values for conditionally removable input connectors, see Section 7.7.4.

For CDL implementations of sources such as ASHRAE Guideline 36, any instance, such as a param-
eter, input or output, that is not provided in the original documentation shall be annotated. For in-
stances, the annotation is __cdl(InstanceInReference=false) while for parameter values, the annotation is
__cdl(ValueInReference=false). For both, if not specified the default value is true.

[ A specification may look like

parameter Real anyOutOfScoMult(

final unit = "1",

final min = 0,

final max = 1)=0.8

"Outside of G36 recommended staging order chiller type SPLR multiplier"

annotation(Evaluate=true, __cdl(ValueInReference=false));

]

Note: This annotation is not provided for parameters that are in general not specified in the ASHRAE Guideline 36, such
as hysteresis deadband, default gains for a controller, or any reformulations of ASHRAE parameters that are needed for
sequence generalization, for instance a matrix variable used to indicate which chillers are used in each stage.
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7.12 Composite Blocks

A composite block is a block that is composed of any number of instances of

• constants,
• parameters,
• input connectors,
• output connectors,
• elementary blocks, and
• other composite blocks.

Composite blocks also contain an equation section in which connections are instantiated to connect inputs connectors
and output connectors of the composite block and its elementary and composite blocks. These rules allow the definition of
composite blocks in a library, and the instantiation and possible configuration of these instances to implement a particular
control sequence.

A simple example of a composite block that multiplies one of its inputs, adds it to the other input and produces at its output
connector the sum is shown in Fig. 7.3.

k=k

gain

minValue

min()

yMax

y

e

Fig. 7.3: Example of a composite control block that outputs y = min(k e, ymax ) where k is a parameter.

Each composite block shall be stored on the file system under the name of the composite block with the file extension
.mo, and with each package name being a directory. The name shall be an allowed Modelica class name.

[For example, if a user specifies a new composite block MyController.MyAdder, then it shall be stored in the file
MyController/MyAdder.mo on Linux or OS X, or MyController\MyAdder.mo on Windows.]

[The following statement, when saved as CustomPWithLimiter.mo, is the declaration of the composite block shown in
Fig. 7.3

block CustomPWithLimiter
"Custom implementation of a P controller with variable output limiter"

parameter Real k "Constant gain";

CDL.Interfaces.RealInput yMax "Maximum value of output signal"
(continues on next page)
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annotation (Placement(transformation(extent={{-140,20},{-100,60}})));

CDL.Interfaces.RealInput e "Control error"

annotation (Placement(transformation(extent={{-140,-60},{-100,-20}})));

CDL.Interfaces.RealOutput y "Control signal"

annotation (Placement(transformation(extent={{100,-10},{120,10}})));

CDL.Reals.MultiplyByParameter gain(final k=k) "Constant gain"

annotation (Placement(transformation(extent={{-60,-50},{-40,-30}})));

CDL.Reals.Min minValue "Outputs the minimum of its inputs"

annotation (Placement(transformation(extent={{20,-10},{40,10}})));

equation
connect(yMax, minValue.u1) annotation (

Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}},

color={0,0,127}));

connect(e, gain.u) annotation (

Line(points={{-120,-40},{-92,-40},{-62,-40}},

color={0,0,127}));

connect(gain.y, minValue.u2) annotation (

Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}},

color={0,0,127}));

connect(minValue.y, y) annotation (

Line(points={{41,0},{110,0}},

color={0,0,127}));

annotation (Documentation(info="<html>
<p>
Block that outputs <code>y = min(yMax, k*e)</code>,
where

<code>yMax</code> and <code>e</code> are real-valued input signals and

<code>k</code> is a parameter.

</p>
</html>"));
end CustomPWithLimiter;

Composite blocks are needed to preserve grouping of control blocks and their connections, and are needed for hierarchical
composition of control sequences.]

7.13 Extension Blocks

To support functionalities that cannot, or may be hard to, implement with a composite block, extension blocks are intro-
duced.
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Note: Extension blocks are introduced to allow implementation of blocks that contain statistical functions such as for
regression, fault detection and diagnostics methods, or state machines for operation mode switches, as well as proprietary
code.

Extension blocks are also suited to propose new elementary blocks for later inclusion in ASHRAE Standard 231P. In fact,
elementary blocks are implemented using extension blocks, except that the annotation __cdl(extensionBlock=true)

(see below) is not present because tools can recognize them because they are stored in the CDL package.

In CDL, extension blocks must have the annotations

annotation(__cdl(extensionBlock=true))

This annotation allows translators to recognize them as extension blocks. Extension blocks are equivalent to the class
block in Modelica. Thus, extension blocks can contain any declarations that are allowed in a Modelica block.

Note: The fact that extension blocks allow any declaration that is allow in a Modelica block implies that extension blocks
can have any number of parameters, inputs and outputs, identical to composite blocks. It also implies that extension
blocks can be used to

• call code, for example in C or from a compiled library,
• import a Functional Mockup Unit that may contain a process model or a fault detection and diagnostics method, and
• implement state machines.

For example, the demand response client Buildings.Controls.DemandResponse.Client would be an extension block if it
were to contain the annotation __cdl(extensionBlock=true), as would the Kalman filter that is used in the Example
Buildings.Utilities.IO.Python_3_8.Examples.KalmanFilter.

Translation of an extension block to json must reproduce the following:

• All public parameters, inputs and outputs.
• A Functional Mockup Unit for Model Exchange or for Co-simulation, version 2.0, with the file name being the full

class name and the extension being .fmu.

Note: With OpenModelica 1.20.0, a Functional Mockup Unit for Model Exchange 2.0 of an extension block can be
generated with the commands:

echo "loadFile(\"Buildings/package.mo\");" > translate.mos

echo "translateModelFMU(Buildings.Controls.OBC.CDL.Reals.PID);" >> translate.mos

omc translate.mos

This will generate the fmu Buildings.Controls.OBC.CDL.Reals.PID.fmu.
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7.14 Replaceable Blocks

CDL allows the use of the Modelica replaceable, constrainedby and redeclare keywords.

The replaceable keyword allows to replace a block by another block when translating a composite block.

To declare a block as replaceable, the syntax is

replaceable ClassName instanceName comment annotation;

where ClassName is the name of the class, instanceName is the name of the instance, and comment and annotation

are optional comments or annotations.

Optionally, the constrainedby keyword can be added after instanceName to constrain what blocks can be used when
redeclaring the replaceable block. The declaration is then

replaceable ClassName instanceName constrainedby NameOfConstrainingClass parameterBindings␣

→˓comment annotation;

where NameOfConstrainingClass is the name of the constraining class, and parameterBindings is optional and can
be used to assign parameters, with or without the final keyword.

[ For example, consider a composite block that has a PID controller. Suppose the developer of the composite block uses
its custom PID controller called MyPID, and the developer wants to allow a user of the composite block to replace the PID
controller with any custom PID controller, as long as it provides the inputs, outputs, and parameters of the elementary
block of the PID controller CDL.Reals.PID.

Then, the composite block can be implemented as

block SomeCompositeBlock "A composite block in a library"

...

parameter Real k = 2 "Proportional gain";

replaceable MyPID con constrainedby CDL.Reals.PID(

k=k)

"PID controller";

...

end SomeCompositeBlock;

Because of the constrainedby clause, a user of the composite block can replace the controller MyPID with any other PID
controller that also provides the inputs, outputs, and parameters that are present in CDL.Reals.PID. Moreover, the assign-
ment k=k will also be applied when the controller is redeclared. Such a redeclaration in which a block MyPreferredPID

is used for the instance con can be done using

block SomeCompositeBlock "A composite block in a library"

parameter Real k = 2 "Proportional gain";

replaceable Buildings.Controls.OBC.CDL.Reals.PID conPID

constrainedby Buildings.Controls.OBC.CDL.Reals.PID(k=k)

"PID controller"
(continues on next page)
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(continued from previous page)

annotation(
Placement(transformation(extent = {{-10, -10}, {10, 10}})));

annotation(
uses(Buildings(version = "12.0.0")));

end SomeCompositeBlock;

In a redeclare statement, any parameters can be assigned, for example by writing redeclare MyPreferredPID

conPID(Ti=60), which sets the parameter Ti to 60.

The constrainedby keyword can also be used to allow use of a block that has other parameters or inputs. A simple
example is

package ReplaceableExample
block ReplaceableBlock
replaceable Buildings.Controls.OBC.CDL.Reals.Sources.Constant con(k=1)

constrainedby Buildings.Controls.OBC.CDL.Reals.Sources.CivilTime

"Replaceable block, constrained by a block that imposes as a requirement

that the redeclaration provides a block with output y (but no parameter k is needed)";

end ReplaceableBlock;

block MyNewBlock "Composite block, with sou replaced by a Pulse with period=0.1"

ReplaceableBlock repBlo(

redeclare Buildings.Controls.OBC.CDL.Reals.Sources.Pulse con(period=0.1));

end MyNewBlock;
annotation (

uses(Buildings(version = "11.0.0")));

end ReplaceableExample;

In the above code, the constrainedby keyword specifies the block CivilTime. As CivilTime has only a RealOutput

called y, but no parameters or inputs, the Constant block can be replaced by a Pulse block, although Pulse has no
parameter k. Without the constrainedby CDL.Reals.Sources.CivilTime clause, Pulse could not have been used as
it has no parameter k.

]

When translating CDL to CXF, the keywords replaceable, constrainedby and redeclare need to be evaluated and
removed. E.g., they are not present in CXF.

7.15 Extension of a Composite Block

A composite block can have a single extends statement. The extends statement must reference another Composite
Block, but it cannot extend an Elementary Block or an Extension Block. The extends statement can have any number of
declarations that assign a parameter value or parameter attributes.
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Note: There are three restrictions compared to the Modelica Language Specification [Mod23]:

1. Only a single extends statement is allowed. This is for simplicity because two extends statements could require
having to reconcile two different hierarchy trees that ultimately extend from the same base block, but may assign
different values to a parameter that is inherited from the common base block. Such a case would be for example

package MultipleExtends

block A0
extends Buildings.Controls.OBC.CDL.Reals.Sources.Constant(k=0);

end A0;

block A1
extends Buildings.Controls.OBC.CDL.Reals.Sources.Constant(k=1);

end A1;

block NotValid "Block that is not valid"

extends A0;

extends A1;

end NotValid;

annotation(
uses(Buildings(version = "12.0.0")),

Documentation(

info = "<p>

Package with a block that is not valid CDL due to multiple extends statements.

</p>"));

end MultipleExtends;

Note that in Modelica, multiple extends are allowed, but the block NotValid is not valid and tools will issue an error
message.

2. The break keyword for component deselection is not allowed.
3. Modelica allows to assign a value to a variable declared as an input. This is not allowed in CDL. This restriction

avoids that input connectors can no longer be graphically connected (as they then would have two bindings to a
value, causing the block to be overdetermined).

[ A simple illustrative example of an extends statement would be to extends the block OBC.Utilities.

PIDWithInputGains, restricts its output to be always between 0 and 1, and adding an output connector that can be
used to access the control error.

This could be accomplished as

block MyPID
extends Buildings.Controls.OBC.Utilities.PIDWithInputGains(

final yMin = 0,

final yMax = 1);
(continues on next page)
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(continued from previous page)

Buildings.Controls.OBC.CDL.Interfaces.RealOutput error

"Control error"

annotation(
Placement(

transformation(

origin = {240, -120},

extent = {{-20, -20}, {20, 20}}),

iconTransformation(

origin = {120, -60},

extent = {{-20, -20}, {20, 20}})));

equation
connect(controlError.y, error) annotation(
Line(

points = {{-178, -6}, {-160, -6},

{-160, -120}, {240, -120}},

color = {0, 0, 127}));

annotation(
uses(Buildings(version = "12.0.0")),

Documentation(

info = "<p>

PID controller that extends the PID controller

with input gains, and that limits the output

between 0 and 1, and

adds an output connector that reports

the control error.

</p>"));

end MyPID;

]

The extends statement can also have any number of redeclare statements (Section 7.14).

[For example, in the block below, the controller with name conPID is replaced with the block OBC.CDL.Reals.

PIDWithReset.

model MyBlockWithRedeclare
extends SomeCompositeBlock(

redeclare Buildings.Controls.OBC.CDL.Reals.PIDWithReset conPID);

end MyBlockWithRedeclare;

]

In a replaceable declaration, the optional constraining-clause defines a constraining type. Any modifications following the
constraining type name are applied both for the purpose of defining the actual constraining type, and they are automatically
applied in the declaration and in any subsequent redeclaration. The precedence order is that declaration modifiers override
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constraining type modifiers.

If the constraining-clause is not present in the original declaration (i.e., the non-redeclared declaration), then the following
applies:

• The type of the declaration is also used as a constraining type.
• The modifiers for subsequent redeclarations and constraining type are the modifiers on the component or short-

class-definition if that is used in the original declaration, otherwise empty.

[ Consider the following example, and see also Section 7.3.2 in [Mod23]:

model Constraints
record BaseRecord
parameter Integer param=0;

end BaseRecord;

record Record
extends BaseRecord(final param=1);

end Record;

model Model
parameter Integer param=2;

// OpenModelica errors because param is declared final

replaceable parameter BaseRecord rec constrainedby BaseRecord(param=param);

end Model;

// Overriding by param=param from the constraining clause:

// OpenModelica and Dymola errors,

// Modelon OPTIMICA evaluates to 2.

Model component1(redeclare Record rec);

// Precedence of declaration over constraining clause from

// https://specification.modelica.org/maint/3.5/inheritance-modification-and-redeclaration.

→˓html#constraining-type:

// Dymola and Modelon OPTIMICA return 1.

Model component2(rec(final param=1));

// Precedence of declaration over constraining clause: Dymola and OCT return 1.

Model component3(rec=Record());

end Constraints;

]

7.16 Model of Computation

CDL uses the synchronous data flow principle and the single assignment rule, which are defined below. [The definition is
adopted from and consistent with the Modelica Language Specification [Mod23].]
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1. All variables keep their actual values until these values are explicitly changed. Variable values can be accessed at
any time instant.

2. Computation and communication at an event instant does not take time. [If computation or communication time has
to be simulated, this property has to be explicitly modeled.]

3. Every input connector shall be connected to exactly one output connector.

In addition, the dependency graph from inputs to outputs that directly depend on inputs shall be directed and acyclic. I.e.,
connections that form an algebraic loop are not allowed. [To break an algebraic loop, one could place a delay block or an
integrator in the loop, because the outputs of a delay or integrator does not depend directly on the input.]

7.17 Metadata

CDL has sufficient information for tools that process CDL to generate for example point lists that list all analog temperature
sensors, or to verify that a pressure control signal is not connected to a temperature input of a controller. Some, but not all,
of this information can be inferred from the CDL language described above. We will use metadata, implemented through
Modelica vendor annotations, to provide this additional information. In Section 7.17.1, we will explain the properties that
can be inferred, and in Section 7.17.2, we will explain how to use semantic models in CDL.

Note: None of this information affects the computation of a control signal. Rather, it can be used for example to facilitate
the implementation of cost estimation tools, or to detect incorrect connections between outputs and inputs.

7.17.1 Inferred Properties

To avoid that signals with physically incompatible quantities are connected, tools that parse CDL can infer the physical
quantities from the unit and quantity attributes.

[For example, a differential pressure input signal with name u can be declared as

Interfaces.RealInput u(

quantity="PressureDifference",

unit="Pa") "Differential pressure signal" annotation (...);

Hence, tools can verify that the PressureDifference is not connected to AbsolutePressure, and they can infer that
the input has units of Pascal.

Therefore, tools that process CDL can infer the following information:

• Numerical value: Binary value (which in CDL is represented by a Boolean data type), analog value, (which in CDL
is represented by a Real data type) mode (which in CDL is presented by an Integer data type or an enumeration,
which allow for example encoding of the ASHRAE Guideline 36 Freeze Protection which has 4 stages).

• Source: Hardware point or software point.
• Quantity: such as Temperature, Pressure, Humidity or Speed.
• Unit: Unit and preferred display unit. (The display unit can be overwritten by a tool. This allows for example a control

vendor to use the same sequences in North America displaying IP units, and in the rest of the world displaying SI
units.)
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]

7.17.2 Semantic Information

The buildings industry has started to integrate different metadata languages such as Brick and Project Haystack into their
control software and technology. ASHRAE Standard 223p is another upcoming metadata language that will describe the
equipment topology in buildings and also the flow of different media. This section specifies the syntax to support these
metadata languages and include the semantic information represented using these languages in a CDL class.

Semantic information shall be included within the annotation keyword, using the __Buildings or __cdl vendor annota-
tion. __cdl shall be used when the semantic information is part of a control sequence and __Buildings shall be used for
every other instance such as equipment or a zone. The following instances shall optionally have annotations containing
semantic information:

• input and output connectors (Section 7.8),
• parameters (Section 7.4.2),
• constants (Section 7.4.3),
• connections (Section 7.10),
• elementary blocks (Section 7.6),
• composite blocks (Section 7.12),
• extension blocks (Section 7.13), and
• packages.

All semantic information shall be included under the semantic section within the __Buildings or __cdl annotations,
using the syntax shown here:

annotation (__cdl( semantic(<semantic information>)));

annotation (__Buildings(semantic(<semantic information>)));

where <semantic information> is a place holder for the semantic information.

The semantic annotation declared in the class definition shall optionally contain the metadataLanguageDefinition

or the naturalLanguageDefinition for each of the languages used. The metadataLanguageDefinition and
naturalLanguageDefinition are used to provide additional information about the different metadata languages and
natural languages that are used throughout the class. The language definitions contain information such as a short
description of the language or the URL to the webpage of the language.

The optional metadataLanguageDefinition shall have the following syntax:

annotation (__cdl(semantic(

metadataLanguageDefinition="<metadataLanguageName> <version> <format>" ["informative text

→˓"])));

annotation (__Buildings(semantic(

metadataLanguageDefinition="<metadataLanguageName> <version> <format>" ["informative text

→˓"])));

where <metadataLanguageName> shall be replaced with the name of the metadata language, <version> is the manda-
tory entry for the version, <format> is the mandatory field for format of the language, such as text/turtle, and
["informative text"] is an optional description of the language, such as the URL to the language. The version
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represents the version of the <metadataLanguageName> used in a particular class. The format represents the format
that the semantic information is expressed in. The format shall be expressed using MIME types.

The optional naturalLanguageDefinition shall have the following syntax:

annotation (__cdl(semantic(

naturalLanguageDefinition="<naturalLanguageName>" ["informative text"])));

annotation (__Buildings(

semantic(naturalLanguageDefinition="<naturalLanguageName>" ["informative text"])));

where <naturalLanguageName> shall be replaced with the indicator of the natural language, represented us-
ing the ISO-639 language codes and ["informative text"] is an optional description of the language. All
<naturalLanguageName> metadata will be in the format text/plain.

[Examples of the <metadataLanguageName> include web ontology languages (OWL) such as Brick or ASHRAE

S223p, and examples of <naturalLanguageName> include en or es. Below is an example of how to define multiple
metadataLanguageDefinition and naturalLanguageDefinition in a class definition annotation.

Example:

annotation (__cdl(semantic(

metadataLanguageDefinition="Brick 1.3 text/turtle" "https://brickschema.org/ontology/1.3",

metadataLanguageDefinition="Project-Haystack 3.9.12 application/ld+json" "https://project-

→˓haystack.org/",

naturalLanguageDefinition="en" "Text in English language"

)));

]

The semantic information shall be included as a metadataLanguage/metadata or a naturalLanguage/metadata pair
within the semantic section in the __cdl or __Buildings annotation using the following syntax:

annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName> <version> <format>" "

→˓<metadata>")));

annotation (__Buildings(semantic(metadataLanguage="<metadataLanguageName> <version> <format>" "

→˓<metadata>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>" "<metadata>")));

annotation (__Buildings(semantic(naturalLanguage="<naturalLanguageName>" "<metadata>")));

where <metadataLanguageName> shall be replaced with the name of the metadata language, <version> is an entry
for the version of the metadataLanguage, <format> is the format of the metadataLanguage, such as text/turtle,
<naturalLanguageName> shall be replaced with the ISO-639 indicator of the natural language and <metadata> is the
metadata for that instance as specified in <metadataLanguageName> or <naturalLanguageName> language.

Note: Depending on the metadataLanguage ("<metadataLanguageName> <version> <format>"), the metadata can
be represented in multiple formats. For example, text/turtle and application/ld+json are a couple of formats to
represent the metadata of web ontology languages such as Brick and ASHRAE S223p. Project-Haystack metadata can
also be represented in multiple formats such as text/zinc, text/turtle and application/ld+json.
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Semantic information in the class definition annotations shall optionally be used to define class level information about the
metadata languages. These include, but are not restricted to, namespace definitions (namespaces in ontologies provide a
means to unambiguously interpret identifiers and make the rest of the ontology presentation more readable) and prefixes
(prefixes are shortcut abbreviations and help make the semantic information more readable).

[In the example below, for the metadataLanguage "Brick 1.3 text/turtle", the class definition annotation has been
used to define the namespace prefixes and for "Project-Haystack 3.9.12 application/ld+json", it has been used
to define namespaces, prefixes and contexts.

Example:

annotation (__cdl(semantic(

metadataLanguage="Brick 1.3 text/turtle" "@prefix Brick: <https://brickschema.org/schema/Brick

→˓#> .

@prefix bldg: <urn:bldg/> . ",

metadataLanguage="Project-Haystack 3.9.12 application/ld+json"

"{\"@context\": { \"ph\": \"https://project-haystack.
→˓org/def/ph/3.9.12#\",

\"phScience\": \"https://project-haystack.org/def/
→˓phScience/3.9.12#\",

\"phIoT\": \"https://project-haystack.org/def/phIoT/
→˓3.9.12#\",

\"rdf\": \"http://www.w3.org/1999/02/22-rdf-syntax-ns
→˓#\",

\"rdfs\": \"http://www.w3.org/2000/01/rdf-schema#\"}}
→˓")));

]

If an instance declaration contains semantic information, it overrides the semantic information of its class definition. If an
instance declaration does not contain semantic information, it inherits the semantic information of its class definition.

Additionally, if there already exists a semantic model for a particular class or for an instance, it shall be referred to in the
annotation using the syntax defined below:

annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName> <version> <format>" "url=

→˓<path>")));

annotation (__Buildings(semantic(metadataLanguage="<metadataLanguageName> <version> <format>"

→˓"url=<path>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>" "url=<path>")));

annotation (__Buildings(semantic(naturalLanguage="<naturalLanguageName>" "url=<path>")));

where <path> shall be either a URL for a model that is on the network or a model that is present on the file system. If
the url= is included in the metadata, the semantic model will be exported from <path>. If url= is not included in the
metadata, <path> shall be the the metadata.

If the metadata model is present on the file system as separate file, the following syntax shall be followed:
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annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName> <version> <format>"

→˓"url=file:///<path/to/file>")));

annotation (__Buildings(semantic(metadataLanguage="<metadataLanguageName> <version> <format>"

→˓"url=file:///<path/to/file>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>" "url=file:///<path/to/file>

→˓")));

annotation (__Buildings(semantic(naturalLanguage="<naturalLanguageName>" "url=file:///<path/to/

→˓file>")));

[Below are examples of how to refer to an existing “Brick 1.3 text/turtle” semantic model existing on the file system at
“/home/user/soda_hall/soda_brick.ttl” and a “Project-Haystack 3.9.12 application/ld+json” semantic model on the network
at the URL “https://project-haystack.org/example/download/alpha.jsonld”.

Example:

annotation (__cdl(

semantic(

metadataLanguage="Brick 1.3 text/turtle" "url=file:///home/user/soda_hall/soda_brick.ttl

→˓")));

annotation (__cdl(

semantic(

metadataLanguage="Project-Haystack 3.9.12 application/ld+json" "url=https://project-

→˓haystack.org/example/download/alpha.jsonld")));

]

<instanceName>: The text <instanceName> (including the < and > characters) within the metadata of an annotation
containing semantic information shall be replaced with the fully qualified name of the instance that contains the semantic
annotation. A fully qualified name to an instance refers to the complete hierarchical path that specifies the instance’s
location within an object structure. This qualified name shall include all parent instances leading up to the current instance,
with each level of instantiation separated by an underscore (“_”). If an instance is nested within multiple levels of instance
definitions, the text that replaces <instanceName> shall reflect the entire chain of instantiation. This avoids the user
having to repeat the name of the instance and makes it less prone to errors and inconsistencies.

[An example of CDL semantic information for an instance in a class with multiple metadataLanguage/metadata pair is
shown below. We can see that <instanceName> has been used in the metadata and Brick metadata will be inferred
as bldg:THeaCoiSup_in a Brick:Hot_Water_Supply_Temperature_Sensor . and the Project Haystack identifier as
{"@id": "THeaCoiSup_in"}.

Example:

Modelica.Blocks.Interfaces.RealInput THeaCoiSup_in

"Heating coil water supply temperature measurement"

annotation (Placement(transformation(extent={{-140,-180},{-100,-140}})),

__cdl(semantic(

metadataLanguage="Brick 1.3 text/turtle"
(continues on next page)
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"bldg:<instanceName> a Brick:Hot_Water_Supply_Temperature_Sensor .",

metadataLanguage=" Project-Haystack 3.9.12 application/ld+json"

"{

\"@id\": \"_:<instanceName>\",
\"ph:hasTag\": [

{\"@id\": \"phIoT:cur\"},
{\"@id\": \"phIoT:hot\"},
{\"@id\": \"phIoT:leaving\"},
{\"@id\": \"phIoT:point\"},
{\"@id\": \"phIoT:sensor\"},
{\"@id\": \"phScience:temp\"},
{\"@id\": \"phScience:water\"}

],

\"rdfs:label\": \" Heating Hot Water Supply Temperature\"
}",

metadataLanguage="en"

"<instanceName> is a temperature reading input that should be hardwired to␣

→˓heating coil temperature sensor")));

]

<parameter>: This syntax allows for a value of a parameter to be used within an annotation containing semantic infor-
mation where the parameter shall refer to the name of a parameter instance within the class. The text <parameter>
(including the < and > characters) shall be replaced by the value of the parameter. The class must have an instance of a
parameter with the name specified by <parameter>, otherwise the specification is not valid.

[In the below example, if the fully qualified name of reaFloSup is reaFloSup, the <instanceName> will be replaced
by reaFloSup. The location of the sensor, represented by the brick:hasLocation relationship, after replacing
<instanceName> will be bldg:<zon>. <zon> refers to the value of the zon parameter within the instantiated reaFloSup,
which is east. Hence, the completely evaluated semantic information becomes:

bldg:reaFloSup a brick:Supply_Air_Flow_Sensor;

brick:hasLocation bldg:east .

Example:

MyCompositeBlock.MyFlowSensor reaFloSup (zon="east") "Supply Air Flow Rate"

annotation ( __cdl(semantic(

metadataLanguage="Brick 1.3 text/turtle"

"bldg:<instanceName> a brick:Supply_Air_Flow_Sensor;

brick:hasLocation bldg:<zon> .")));

]

The semantic information of an instance shall be able to refer to the semantic information of other instances declared in
the class (or in inherited classes). If the instance does not exist, the semantic model is invalid.

[In the below example, the semantic information of heating coil heaCoi is referring to the semantic information of the hot
water supply temperature sensor THeaCoiSup_in.
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Modelica.Blocks.Interfaces.RealInput THeaCoiSup_in

"Heating coil water supply temperature measurement"

annotation (Placement(transformation(extent={{-140,-180},{-100,-140}})),

__cdl(semantic(

metadataLanguage="Brick 1.3 text/turtle"

"bldg:<instanceName> a Brick:Hot_Water_Supply_Temperature_Sensor ."

)));

Buildings.Fluid.HeatExchangers.DryCoilEffectivenessNTU heaCoi(

show_T=true,
dp1_nominal=3000,

dp2_nominal=0

) "Heating coil"

annotation (Placement(transformation(extent={{118,-36},{98,-56}})),

__Buildings(semantic(

metadataLanguage="Brick 1.3 text/turtle"

"bldg:<instanceName> a Brick:Heating_Coil ;

brick:hasPoint bldg:THeaCoiSup_in ."

)));

]

If a class inherits one or more classes (CDL only allows for inheriting one class), all the semantic information
in the classes is inherited. However, if the classes being inherited and the class inheriting it contains different
metadataLanguage or naturalLanguage due to differences in any of <metadataLanguageName> or <version> or
<format> or <naturalLanguageName> parts of the syntax, they shall be treated as different languages.

If an inherited replaceable instance has been replaced using the redeclare keyword, the semantic information of
the instance that replaced the original instance shall be used, and the semantic information of the replaced class shall
be ignored. If there is no semantic information in the redeclared instance annotation, any semantic information of the
constraining clause (using the constrainedby Modelica keyword) of the original replaceable instance shall be used.
Any semantic information in the original replaceable instance shall not be used if it has been redeclared irrespective of
the presence or absence of semantic information in the constraining clause of the redeclared instance.
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Chapter 8

Control eXchange Format (CXF)

8.1 Introduction

CXF is a representation of CDL in a format that is intended to be readily imported and exported into building automation
systems. For example, a commercial control provider might utilize it to import control logic from a design tool and deploy
it their commercial building automation system for a particular project. Structurally the content of a logic in CDL and
CXF are identical, in that both utilize the same ElementaryBlocks, CompositeBlocks, and ExtensionBlocks as well as
Constants, Parameters, InputConnectors and OutputConnectors. While CDL has language constructs that are used to
build library of sequences, CXF was designed to only represent a specifically configured logic. The logic described in a
CDL implementation is identical to the logic described in its CXF representation. But there are several key differences
between CDL and CXF:

• CXF is defined utilizing the linked data format JSON-LD, while CDL utilizes the modeling language Modelica. JSON-
LD is a syntax to serialize linked data in JSON (ECMA-404).

• There is a translation process required to convert a control logic from CDL to CXF.
• For ElementaryBlocks (Section 7.6), their CXF representation does not include the implementation (equation sec-

tion).
• Like many scientific modeling languages, Modelica requires tight casting of data types.

[For example, in Modelica, a data type needs to be declared as type Real or Integer. Real data are not allowed
to be tested for equality since computations are prone to rounding errors. ]

Note: When importing a CXF representation of a CDL logic into a commercial control system that does not support
Real or Integer data types, the commercial entity’s “CDL import” software tool must determine on how to handle
the Real and Integer InputConnectors, OutputConnectors, Parameters and Constants. For example, the tool could
change it to Analog. Similarly, while exporting a CXF representation of a control logic implemented in a commercial
control system, the commercial entity’s “CDL export” software tool must decide how to translate unsupported data
types such as Analog into Real or Integer InputConnectors, OutputConnectors, Parameters and Constants.

• Control logic which utilize arrays (both one- and multi -dimensional) in CDL shall have the option to be modified (or
“flattened”) in CXF (more details provided in a later section).
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8.2 Classes and Properties

A valid CXF file contains Blocks (ElementaryBlocks, CompositeBlocks, ExtensionBlocks or a combination of these) and
each instance of a Block uses the set of InputConnectors, OutputConnectors, Parameters, and Constants as defined
within definition of the Block. To support the translation of a CDL control logic to its CXF representation, a Resource
Description Framework graph representation of the standard has been provided in a CXF-Core.jsonld file using the MIME
type application/ld+json. CXF-Core.jsonld can be found here. The key classes and properties present in CXF-
Core.jsonld that can be used to created CXF classes are shown in Table Table 8.1 and Table Table 8.2 respectively.

Table 8.1: Key classes within CXF-Core.jsonld

Class Description
Package A Package is a specialized class used to group multiple Blocks.
Blocks A Block is the abstract interface of a control logic.
Elementary-
Block

An ElementaryBlock defined by ASHRAE S231 (subClassOf Block) (Section 7.6).

Composite-
Block

A CompositeBlock is a collection of ElementaryBlocks or other CompositeBlocks (subClassOf
Block) and the connections through their inputs and outputs (Section 7.12).

ExtensionBlock An ExtensionBlock supports functionalities that cannot, or are hard to, implement with a Compos-
iteBlock (subClassOf Block) (Section 7.13).

InputConnector An InputConnector provides an input to a Block.
OutputConnec-
tor

An OutputConnector provides an output from a Block.

Parameter A Parameter is a value that is time-invariant and cannot be changed based on an input signal.
Constant A Constant is a value that is fixed at compilation time.
DataType A data type description for InputConnectors, OutputConnectors, Parameters and Constants.
BooleanInput An InputConnector of the Boolean data type.
BooleanOutput An OutputConnector of the Boolean data type.
IntegerInput An InputConnector of the Integer data type.
IntegerOutput An OutputConnector of the Integer data type.
RealInput An InputConnector of the Real data type.
RealOutput An OutputConnector of the Real data type.
Enumera-
tionType

An Integer enumeration starting with the value 1, each element is mapped to a unique String.

String A data type to represent text.
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Table 8.2: Key properties within CXF-Core.jsonld

Property Domain Range Description
hasInput Block InputConnector A property that relates an instance of an Input-

Connector with a Block.
hasOutput Block OutputConnector A property that relates an instance of an Output-

Connector with a Block.
hasParame-
ter

Block Parameter A property that relates an instance of a Parameter
with a Block.

hasConstant Block Constant A property that relates an instance of a Constant
with a Block.

hasInstance Block Block, InputConnector,
OutputConnector, Pa-
rameter, Constant

A property that associates an instance of an In-
putConnector, OutputConnector, Parameter, Con-
stant or a Block within a Block with the instance of
the Block itself.

hasFmuPath ExtensionBlock String A property that specifies the (local or on the net-
work) path to a Functional Mockup Unit implemen-
tation of an ExtensionBlock.

isOf-
DataType

InputConnector, Out-
putConnector, Param-
eter, Constant

DataType A property that specifies the data type for in-
stances of InputConnectors, OutputConnectors,
Parameters and Constants.

contains-
Block

Block Block A property that specifies that an instance of a
Block is composed in part with an instance of an-
other Block.

connect-
edTo

OutputConnector,
InputConnector

InputConnector, Out-
putConnector

A property that relates the output of one Block
to the input of another Block (and vice-versa).
Only InputConnectors and OutputConnectors that
carry the same data type can be connected.

translation-
Software

Package, Block String A property that specifies the name of the software
used to generate the CXF representation of the
control logic.

translation-
Software-
Version

Package, Block String A property that specifies the version of the soft-
ware used to generate CXF representation of the
control logic.

All the ElementaryBlocks within the standard have been defined and included in CXF-Core.jsonld. However, CXF
representation of elementary blocks does not contain the implementation details of the blocks.

8.3 Generating CXF from an instance of a CDL class

If the instantiation of a CDL block (within a Modelica or another CDL class) contains the annotation __cdl(export=true),
the CDL class of the instantiated block shall be translated to CXF. Specifying the export annotation is optional and if
unspecified, export=false is assumed.
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8.4 Source of CXF translation

The CXF representation of a control logic shall optionally include the name and the version of the software that generated
it using the properties translationSoftware and translationSoftwareVersion respectively.

8.5 Representing Instances in CXF

In the CXF representation of a CDL control logic, the instances of the CDL class shall contain the entire package path of
the CDL class, the octothorpe character (#), followed by the name of the instance. An (“child”) instance of an (“parent”)
instance shall be referenced in CXF by the parent instance’s CXF representation, followed by a period character (.) and
then the child instance’s name. Additionally, the CXF representation of the parent instance shall contain a hasInstance

property associating it to the child instance.

[Example of a CDL instance representation in CXF

CDL:

within ExamplePackage;
block ExampleSeq
CDL.Reals.MultiplyByParameter gain(k = 100000)

"My gain";

end ExampleSeq;

CXF reference to gain instance: ExamplePackage.ExampleSeq#gain

CXF reference to gain.k instance: ExamplePackage.ExampleSeq#gain.k

CXF property linking gain and gain.k: ExamplePackage.ExampleSeq#gain S231:hasInstance ExamplePackage.

ExampleSeq#gain.k . ]

8.6 Handling Arrays and Expressions

Arrays and expressions in a CDL class shall be represented in CXF as specified below:

• Arrays (both one-dimensional (vectors) and multi-dimensional): In the CXF translation, array references shall either
be preserved or flattened. If the array references are to be flattened, the indices appearing within square brackets
([ and ]) in CDL shall be appended with the underscore (_) character and each index shall be concatenated with
the underscore character (_).
[For example, if there array references are preserved, A[1] in CDL shall be referenced as A[1] in CXF. If they are
flattened, A[1] shall be represented as A_1 and B[1 ,2] shall be represented as B_1_2. ]
Array references in CDL shall be flattened in the row-major approach in CXF. Flattened array references shall be
generated row-wise, starting from the left-most element of the first row to the right-most element of the first row,
before advancing to the next row, until the right-most element of the last row.
If there already exists an instance in the CDL logic with the same name as a flattened array reference, then the
translation process shall raise an error.
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[For example, if in a CDL class, there exists a parameter instance A_1 and a vector with 3 elements A[3], upon
flattening, references to the first element of the vector (A[1]) would become A_1. As this instance already exists,
the CXF translator tool shall raise an error.]

• Expressions: The CXF translation of a CDL control logic shall either preserve or evaluate all the expressions present
in the CDL logic, such as those within assignment operations, conditional assignments and arithmetic operations.
By default, the expressions shall be preserved in the CXF representation. If the expressions have to be evaluated
and the expressions contain references to a parameter, the value of the parameter shall be used in the evaluating
the expression. If the expressions have to be evaluated and expressions contain references to parameter(s) that
does not have a value binding, then the translation process shall raise an error.

Note: The determination of whether arrays should be flattened or expressions should be evaluated shall be made by the
software tool that generates CXF representations of the CDL control logic.

8.7 ExtensionBlocks

Instances of ExtensionBlocks within a CDL classs shall contain the annotation __cdl(extenstion=true). The location
of the Functional Mockup Unit implementation of the ExtensionBlock shall be included in the CXF representation using
the property hasFmuPath.

66



OpenBuildingControl Documentation of Control Sequences

Chapter 9

Documentation of Control Sequences

9.1 Introduction

This section describes how to generate a control sequence description based on a CDL specification.

There are two distinct situations:

1. The control sequence could be from a publication such as ASHRAE Guideline 36 for which a Microsoft Word version
exists, or

2. The control sequence could be for a sequence that only exists in CDL.

The approach for 1. is currently being developed. Approach 2 is described in Section 9.3.

9.2 Editing a Sequence that is Specified in a Word Document

This is currently being specified and will be added later.

9.3 Exporting the Control Logic from a CDL Model

This section describes how a English language description of a sequence could be exported from the CDL implementation.
This will allow developers and users to build libraries of control sequences for which an English language specification
can be exported without having to have a template Word document (which generally does not exist for this use case).

Two different representations will be supported:

1. Specifications for sequences of operations. These specifications expresses the intent of the designer for the se-
quence. They contain text in the form of requirements, such as “The room temperature shall be maintained between
. . . ”. Such requirements leave room for different interpretations and resulting implementations of the control inputs
and outputs, and the control logic, thereby making verification as in Section 12.7 impractical. It also risk that the
sequences do not satisfy the designer’s intent. However, if encoded in a library that has been tested, the control
sequence can be specified more precise.
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2. Documentation of the as-implemented sequences. These typically serve the operator, and may contain text such as
“The controller tracks the room temperature set point by . . . ”. This type of formulation is also what is typically used
to document the implementation of sequences in the Modelica Buildings Library.

Control sequences of the form 1) typically contain additional requirements that are not part of the sequence description,
such as what energy code to follow. Such information can however be included in a section that precedes or follows the
actual sequence implementation. Thus, the here described export will document only the sequences, which can then be
combined with these other documentation.

To export sequence specifications of the form 1), we introduce a new optional annotation
annotation(__CDL(SequenceSpecification(info=STRING))) where STRING is an html formatted string
that contains the sequence specification. E.g., the annotation is in the same format as the CDL annotation
annotation(Documentation(info=STRING). The new optional annotation is introduced solely for the purpose
that in the buildings industry, control specifications use a different form than what is usually used in Modelica, i.e., to
address the differences between 1) and 2) above. I.e., Modelica documentation describe what a sequence does, whereas
for sequence specifications, the sequence description must follow the structure dictated by the Construction Specification
Institute (CSI) and the American Institute of Architects (AIA) because they become legal documents.

How to generate the sequence description that can be inserted into these construc-
tion documents is described using a small example. Consider the model Build-
ings.ThermalZones.EnergyPlus_9_6_0.Examples.SingleFamilyHouse.RadiantHeatingCooling_TSurface. This model
has two sequences, one for the radiant heating and one for the radiant cooling. These two sequences are de-
scribed in Buildings.Controls.OBC.RadiantSystems.Heating.HighMassSupplyTemperature_TRoom and in Build-
ings.Controls.OBC.RadiantSystems.Cooling.HighMassSupplyTemperature_TRoomRelHum using html format.

To export sequences from these models, modelica-json will need to generate a Microsoft Word document using the
following procedure.

1. Read the top-level Modelica file and extract each block that is in the package Buildings.Controls.OBC. Put the
names of these blocks in a list.

2. Remove from this list all blocks that are in Buildings.Controls.OBC.CDL. (These are are elementary blocks that
need not be documented.)

3. Read the top-level Modelica file and extract all blocks that contain in their class definition the annotation
__cdl(document=true). Add these blocks to the list. (This will allow users to add composite control blocks that
will be documented.)

4. For each block in the list.
a. If the block contains a section annotation(__CDL(SequenceSpecification(info=STRING))), use the

value of this section as the sequence documentation of this block. Goto step d).
b. If the block contains a section annotation(Documentation(info=STRING)), write a warning that this block

will be documented with as-implemented description rather than a sequence specification as no control se-
quence specification has been found, and use the value of this section as the sequence documentation of this
block. Goto step d).

c. Issue a warning that this block contains no control sequence description and proceed to the next block.
d. In the sequence description of this block, for each parameter that is in the description, add the value and

units. For example, an entry such as ... between <code>TSupSetMin</code> and <code>TSupSetMax</

code> based on ... becomes ... between <code>TSupSetMin</code> (=20&deg; adjustable) and

<code>TSupSetMax</code> (=40&deg; adjustable) based on .... Note that the word “adjustable”
must not be added if the parameter value is declared as final. Proceed to the next block.

5. Collect the descriptions of each block and output it in a Word document. Configure the Word document to have
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automatic section numbering.

As an example, consider the following snippet of a composite control block.

HighMassSupplyTemperature_TRoom con(TSubSet_max=303.15, final TSubSet_min=293.15);

block HighMassSupplyTemperature_TRoom

"Room temperature controller for radiant heating with constant mass flow and variable supply␣

→˓temperature"

parameter Real TSupSet_max(

final unit="K",

displayUnit="degC") "Maximum heating supply water temperature";

parameter Real TSupSet_min(

final unit="K",

displayUnit="degC") = 293.15 "Minimum heating supply water temperature";

parameter Controls.OBC.CDL.Types.SimpleController

controllerType = Buildings.Controls.OBC.CDL.Types.SimpleController.P

"Type of controller" annotation (Dialog(group="Control gains"));

... [omitted]

annotation(

Documentation(

info="<html>

<p>

Controller for a radiant heating system.

</p>

<p>

The controller tracks the room temperature set point <code>TRooSet</code> by

adjusting the supply water temperature set point <code>TSupSet</code> linearly between

<code>TSupSetMin</code> and <code>TSupSetMax</code>

PI-controller likely saturate due to the slow system response.

</p>

</html>"

),

__cdl(

SequenceSpecification(

info="<html>

<p>

Controller for a radiant heating system.

</p>

<p>

The controller shall track the room temperature set point by

adjusting the supply water temperature set point <code>TSupSet</code> linearly␣

→˓between (continues on next page)
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(continued from previous page)

<code>TSupSetMin</code> and <code>TSupSetMax</code>

based on the output signal of the proportional controller.

The pump shall be either off or be operating at full speed, in which case <code>

→˓yPum = 1</code>.

The pump control shall be based on a hysteresis that switches the pump on when the␣

→˓output of the

proportional controller <code>y</code> exceeds <i>0.2</i>, and the pump shall be␣

→˓commanded off when the output falls

below <i>0.1</i>. See figure below for the control charts.

</p>

<p align="center">

<img alt="Image of control output"

src="modelica://Buildings/Resources/Images/Controls/OBC/RadiantSystems/Heating/

→˓HighMassSupplyTemperature_TRoom.png"/>

</p>

<p>

<-- cdl(visible=(not (controllerType is final))) or controllerType <> CDL.Types.

→˓SimpleController.P -->

<b>Note:</b>

For systems with high thermal mass, this controller should be left configured

as a P-controller, which is the default setting.

PI-controller likely saturate due to the slow system response.

</p>

<-- end cdl -->

</html>"

)

)

);

end HighMassSupplyTemperature_TRoom;

For this control block, modelica-json will produce content for the Word description that looks like

“The controller shall track the room temperature set point by adjusting the supply water temperature set point
TSupSet linearly between TSupSetMin (= 20∘) and TSupSetMax (= 30∘ adjustable) based on the output signal
of the proportional controller. . . ”

modelica-json will remove the notice at the end of the sequence description if the controllerType is declared as
final (because then, no other choice can be made). Through this mechanism, sections and images can be removed or
enabled in the generated sequence description.

To use IP units, modelica-json will have a configuration that specifies what units should be used. The documentation
will also include the figure as declared in the CDL specification.

The Control Sequence Selection and Configuration tool could make the section
annotation(__CDL(SequenceSpecification(info=STRING))) editable, thereby allowing users to customize the
description of the sequence and add any other desired documentation.
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Chapter 10

Controls Library

10.1 Introduction

To implement control sequences that conform to the CDL specification of Section 7, we implemented a library of elemen-
tary control blocks, and a library of control sequences that are composed of these elementary blocks, using composition
rules that are specified in the CDL specification. The next two sections give a brief overview of these library. To see
their implementation, browse the online documentation at https://simulationresearch.lbl.gov/modelica/releases/latest/help/
Buildings_Controls_OBC.html.

10.2 CDL Library

To implement control sequences in CDL, we created the CDL library. This library contains all compositional elements of
the CDL language, such as connectors for input and output signals of various types (real, integer etc.), type definitions
such as for the day-of-week, and the elementary blocks that are described in Section 7.6. This library consist of about 130
elementary blocks, such as a block that adds two real-valued input signals and produces its sum as the output, a block
that implements a proportional-integral-derivative controller with anti-windup, and blocks that perform basic operations on
boolean signals. Thus, the CDL library defines the necessary and sufficient set of models that need to be supported
by control product lines to which control sequences that are expressed in CDL can be translated to, using the process
described in Section 11.3.

These elementary blocks are used to compose control sequences for mechanical systems, lighting systems and active
facades as described in the next section.

10.3 Library of Control Sequences

To make ready-to-use control sequences available to building designers, researchers and control providers, we imple-
mented control sequences for secondary HVAC systems based on ASHRAE Guideline 36, for lighting systems and for
active facades.
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16

Implement sequences with CDL
Organized sequences according to Guideline 36 structure

Fig. 10.1: Overview of package that includes control sequences from ASHRAE Guideline 36.

For example, Fig. 10.1 shows an overview of the control sequences that have been implemented based on ASHRAE
Guideline 36. The implementation is structured hierarchically into packages for air handler units, into constants that
indicate the mode of operation, into generic sequences such as for a trim and respond logic, and into sequences for
terminal units. Around 30 smaller sequences are used to hierarchically compose controllers for single-zone and multi-
zone VAV systems.

Every sequence contains an English language description, an implementation using block diagram modeling, and one
or more examples that illustrate the use of the sequence. These examples are available in the Validation package in
which the sequences are used, typically with open-loop tests. For top-level sequences, there are also closed loop tests
available. For example Fig. 10.2 shows the schematic view of the model that evaluates the performance of the single zone
VAV controller based on ASHRAE Guideline 36 [ZBG+20]. In this model, the controller output is connected to an HVAC
system model, which in turn is connected to a model of the building. Sensor data from the HVAC system and the room air
temperature are fed back to the controller to form the closed loop test. The model is available in the Modelica Buildings
Library as the model Buildings.Air.Systems.SingleZone.VAV.Examples.Guideline36.

As of Fall 2020, additional sequences are being implemented for chilled water plants and for boiler plants, following the
ASHRAE Research Project Report 1711, and for optimal start-up (for heating) and cool down (for cooling).
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Fig. 10.2: Schematic view of model that uses the CDL implementation of the single zone VAV controller based on ASHRAE Guideline
36.
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Chapter 11

Code Generation

11.1 Introduction

This section describes the translation of control sequences expressed in CDL to a building automation system.

Translating the CDL library to a building automation system to make it available as part of a product line needs to be done
only when the CDL library is updated, and hence only developers need to perform this step. However, translation of a
CDL-conforming control sequence that has been developed for a specific building will need to be done for each building
project.

While translation from CDL to C code or to a Functional Mockup Unit is support by Modelica simulation environments,
translation to legacy building automation product lines is more difficult as they typically do not allow executing custom C
code. Moreover, a building operator typically needs a graphical operator interface, which would not be supported if one
were to simply upload compiled C code to a building automation system.

Use of CDL control sequences for building operation, or use of such sequences in a verification test module, consists of
the following steps:

1. Implementation of the control sequence using CDL.
2. Export of the Modelica model as a Functional Mockup Unit for Model Exchange (FMU-ME) or as a JSON specifica-

tion.
3. Import of the FMU-ME in the runtime environment, or translation of the JSON specification to the language used by

the building automation system.

Fig. 11.1 shows the process of exporting and importing control sequences.

The next section describes three different approaches that can be used by control vendors to translate CDL to their product
line:

1. Translation of the CDL-compliant sequence to a JSON intermediate format, which can be translated to the format
used by the control platform (Section 11.3).

2. Export of the whole CDL-compliant sequence using the FMI standard (Section 11.4), a standard for exchanging
simulation models that can be simulated using a variety of open-source tools.

3. Translation of the CDL-compliant sequence to an xml-based standard called System Structure and Parameterization
(SSP), which is then used to parameterize, link and execute pre-compiled elementary CDL blocks (Section 11.5).
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Fig. 11.1: Overview of the code export and import of control sequences and verification tests.
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The best approach will depend on the control platform. While in the short-term, option 1) is likely preferred as it allows
reusing existing control product lines, the long term vision is that control product lines would directly compile CDL using
option 2) or 3). Before explaining these three approaches, we first discuss challenges of translation of CDL sequences to
building automation systems, as well as their implications.

11.2 Challenges and Implications for Translation of Control Sequences from
and to Building Control Product Lines

This section discusses challenges and implications for translating CDL-conforming control sequences to the programming
languages used by building automation system.

First, we note that simply generating C code is not viable for such applications because building automation systems
generally do not allow users to upload C code. Moreover, they also need to provide an interface for the building operator
that allows editing the control parameters and control sequences.

Second, we note that the translation will for most, if not all, systems only be possible from CDL to a building automation
system, but not vice versa. This is due to specific constructs that may exist in building automation systems but not in CDL.
For example, if Sedona (https://www.sedona-alliance.org/) were the target platform, then translating from Sedona to CDL
will not be possible because Sedona allows boolean variables to take on the values true, false and null, but CDL has
no null value.

11.3 Translation of a Control Sequence using a JSON Intermediate Format

Control companies that choose to not use C-code generation or the FMI standard to execute CDL-compliant control
sequences can develop translators from CDL to their native language. To aid in this process, a CDL to JSON translator
can be used. Such a translator is currently being developed at https://github.com/lbl-srg/modelica-json. This translator
parses CDL-compliant control sequences to a JSON format. The parser generates the following output formats:

1. A JSON representation of the control sequence,
2. a simplified version of this JSON representation, and
3. an html-formated documentation of the control sequence.

To translate CDL-compliant control sequences to the language that is used by the target building automation system, the
simplified JSON representation is most suited.

As an illustrative example, consider the composite control block shown in Fig. 7.3 and reproduced in Fig. 11.2.

In CDL, this would be specified as

1 block CustomPWithLimiter
2 "Custom implementation of a P controller with variable output limiter"

3 parameter Real k "Constant gain";

4 CDL.Interfaces.RealInput yMax "Maximum value of output signal"

5 annotation (Placement(transformation(extent={{-140,20},{-100,60}})));

6 CDL.Interfaces.RealInput e "Control error"

7 annotation (Placement(transformation(extent={{-140,-60},{-100,-20}})));
(continues on next page)
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Fig. 11.2: Example of a composite control block that outputs y = max(k e, ymax ) where k is a parameter.

(continued from previous page)

8 CDL.Interfaces.RealOutput y "Control signal"

9 annotation (Placement(transformation(extent={{100,-10},{120,10}})));

10 CDL.Reals.MultiplyByParameter gain(final k=k) "Constant gain"

11 annotation (Placement(transformation(extent={{-60,-50},{-40,-30}})));

12 CDL.Reals.Min minValue "Outputs the minimum of its inputs"

13 annotation (Placement(transformation(extent={{20,-10},{40,10}})));

14 equation
15 connect(yMax, minValue.u1) annotation (

16 Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}}, color={0,0,127}));

17 connect(e, gain.u) annotation (

18 Line(points={{-120,-40},{-92,-40},{-62,-40}}, color={0,0,127}));

19 connect(gain.y, minValue.u2) annotation (

20 Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}}, color={0,0,127}));

21 connect(minValue.y, y) annotation (

22 Line(points={{41,0},{110,0}}, color={0,0,127}));

23 annotation (Documentation(info="<html>
24 <p>
25 Block that outputs <code>y = min(yMax, k*e)</code>,
26 where

27 <code>yMax</code> and <code>e</code> are real-valued input signals and

28 <code>k</code> is a parameter.

29 </p>
30 </html>"));
31 end CustomPWithLimiter;

This specification can be converted to JSON using the program modelica-json. Executing the command

node modelica-json/app.js -f CustomPWithLimiter.mo -o json-simplified

will produce a file called CustomPWithLimiter-simplified.json that looks as follows:
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1 [

2 {

3 "modelicaFile": "CustomPWithLimiter.mo",

4 "topClassName": "CustomPWithLimiter",

5 "comment": "Custom implementation of a P controller with variable output limiter",

6 "public": {

7 "parameters": [

8 {

9 "className": "Real",

10 "name": "k",

11 "comment": "Constant gain",

12 "annotation": {

13 "dialog": {

14 "tab": "General",

15 "group": "Parameters"

16 }

17 }

18 }

19 ],

20 "models": [

21 {

22 "className": "CDL.Interfaces.RealInput",

23 "name": "yMax",

24 "comment": "Maximum value of output signal"

25 },

26 {

27 "className": "CDL.Interfaces.RealInput",

28 "name": "e",

29 "comment": "Control error"

30 },

31 {

32 "className": "CDL.Interfaces.RealOutput",

33 "name": "y",

34 "comment": "Control signal"

35 },

36 {

37 "className": "CDL.Reals.MultiplyByParameter",

38 "name": "gain",

39 "comment": "Constant gain",

40 "modifications": [

41 {

42 "name": "k",

43 "value": "k",

44 "isFinal": true
45 }

(continues on next page)
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(continued from previous page)

46 ]

47 },

48 {

49 "className": "CDL.Reals.Min",

50 "name": "minValue",

51 "comment": "Outputs the minimum of its inputs"

52 }

53 ]

54 },

55 "info": "<html>\n<p>\nBlock that outputs <code>y = min(yMax, k*e)</code>,\nwhere\n<code>yMax

→˓</code> and <code>e</code> are real-valued input signals and\n<code>k</code> is a parameter.\n

→˓</p>\n</html>",

56 "connections": [

57 [

58 {

59 "instance": "yMax"

60 },

61 {

62 "instance": "minValue",

63 "connector": "u1"

64 }

65 ],

66 [

67 {

68 "instance": "e"

69 },

70 {

71 "instance": "gain",

72 "connector": "u"

73 }

74 ],

75 [

76 {

77 "instance": "gain",

78 "connector": "y"

79 },

80 {

81 "instance": "minValue",

82 "connector": "u2"

83 }

84 ],

85 [

86 {

87 "instance": "minValue",

88 "connector": "y"
(continues on next page)
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(continued from previous page)

89 },

90 {

91 "instance": "y"

92 }

93 ]

94 ]

95 }

96 ]

Note that the graphical annotations are not shown. The JSON representation can then be parsed and converted to
another block-diagram language. Note that CDL.Reals.MultiplyByParameter is an elementary CDL block (see Section
7.6). If it were a composite CDL block (see Section 7.12), it would be parsed recursively until only elementary CDL blocks
are present in the JSON file. Various examples of CDL converted to JSON can be found at https://github.com/lbl-srg/
modelica-json/tree/master/test/FromModelica.

The simplified JSON representation of a CDL sequence must be compliant with the corresponding JSON Schema. A
JSON Schema describes the data format and file structure, lists the required or optional properties, and sets limitations
on values such as patterns for strings or extrema for numbers.

The CDL Schema can be found at https://github.com/lbl-srg/modelica-json/blob/master/schema-cdl.json .

The program modelica-json automatically tests the JSON representation parsed from a CDL file against the schema right
after it is generated.

The validation of an existing JSON representation of a CDL file against the schema can be done executing the command

node modelica-json/validation.js -f filename.json

Control providers can use the JSON Schema as a specification to develop a translator to a control product line. If JSON
files are the starting point, then they should first validate the JSON files against the JSON Schema, as this ensures that
the input files to the translator are valid.

11.4 Export of a Control Sequence or a Verification Test using the FMI Stan-
dard

This section describes how to export a control sequence, or a verification test, using the FMI standard . In this workflow,
the intermediate format that is used is FMI for model exchange, as it is an open standard, and because FMI can easily be
integrated into tools for controls or verification using a variety of languages.

Note: Also possible, but outside of the scope of this project, is the translation of the control sequences to JavaScript,
which could then be executed in a building automation system. For a Modelica to JavaScript converter, see https://github.
com/tshort/openmodelica-javascript.

To implement control sequences, blocks from the CDL library (Section 7.6) can be used to compose sequences that
conform to the CDL language specification described in Section 7. For verification tests, any Modelica block can be used.
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Next, to export the Modelica model, a Modelica tool such as OpenModelica, Impact, OPTIMICA or Dymola can be used.
For example, with OPTIMICA a control sequence can be exported using the Python commands

from pymodelica import compile_fmu

compile_fmu("Buildings.Controls.OBC.ASHRAE.G36.AHUs.SingleZone.VAV.Economizers.Controller")

This will generate an FMU-ME. Finally, to import the FMU-ME in a runtime environment, various tools can be used,
including:

• Tools based on Python, which could be used to interface with sMAP (https://pythonhosted.org/Smap/en/2.0/index.
html) or Volttron (https://www.energy.gov/eere/buildings/volttron):

– PyFMI (https://pypi.org/pypi/PyFMI)
• Tools based on Java:

– Building Controls Virtual Test Bed (https://simulationresearch.lbl.gov/bcvtb)
– JFMI (https://ptolemy.berkeley.edu/java/jfmi/)
– JavaFMI (https://bitbucket.org/siani/javafmi/wiki/Home)

• Tools based on C:
– FMI Library (https://github.com/modelon-community/fmi-library)

• Modelica tools, of which many if not all provide functionality for real-time simulation:
– OpenModelica (https://openmodelica.org/)
– Impact (https://www.modelon.com/modelon-impact/)
– Dymola (https://www.3ds.com/products-services/catia/products/dymola/)
– MapleSim (https://www.maplesoft.com/products/maplesim/)
– SimulationX (https://www.esi-group.com/products/system-simulation)
– SystemModeler (https://www.wolfram.com/system-modeler/index.html)

See also https://fmi-standard.org/tools/ for other tools.

Note that directly compiling Modelica models to building automation systems also allows leveraging the ongoing EM-
PHYSIS project (2017-20, Euro 14M) that develops technologies for running dynamic models on electronic control units
(ECU), micro controllers or other embedded systems. This may be attractive for FDD and some advanced control se-
quences.

11.5 Modular Export of a Control Sequence using the FMI Standard for Con-
trol Blocks and using the SSP Standard for the Run-time Environment

In 2019, a new standard called System Structure and Parameterization (SSP) was released (https://ssp-standard.org/).
The standard provides an xml scheme for the specification of FMU parameter values, their input and output connections,
and their graphical layout. The SSP standard allows for transporting complex networks of FMUs between different plat-
forms for simulation, hardware-in-the-loop and model-in-the-loop [KohlerHM+16]. Various tools that can simulate systems
specified using the SSP standard are available, see https://ssp-standard.org/tools/.

CDL-compliant control sequences could be exported to the SSP standard as shown in Fig. 11.3.

In such a workflow, a control vendor would translate the elementary CDL blocks (Section 7.6) to a repository of FMU-ME
blocks. These blocks will then be used during operation. For each project, its CDL-compliant control sequence could be
translated to the simplified JSON format, as described in Section 11.3. Using a template engine (similar as is used by
modelica-json to translate the simplified JSON to html), the simplified JSON representation could then be converted to
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Fig. 11.3: Translation of CDL to SSP.

the xml syntax specified in the SSP standard. Finally, a tool such as the FMI Composer could import the SSP-compliant
specification, and execute the control sequence using the elementary CDL block FMUs from the FMU repository.

Note: In this workflow, all key representations are based on standards: The CDL-specification uses a subset of the
Modelica standard, the elementary CDL blocks are converted to the FMI standard, and finally the runtime environment
uses the SSP standard.

11.6 Replacement of Elementary CDL Blocks during Translation

When translating CDL to a control product lines, a translator may want to conduct certain substitutions. Some of these
substitutions can change the control response, which can cause the verification that checks whether the actual implemen-
tation conforms to the specification to fail.

This section therefore explains how certain substitutions can be performed in a way that allows formal verification to pass.
(How verification tests will be conducted will be specified later in 2018, but essentially we will require that the control
response from the actual control implementation is within a certain tolerance of the control response computed by the
CDL specification, provided that both sequences receive the same input signals and use the same parameter values.)

11.6.1 Substitutions that Give Identical Control Response

Consider the gain CDL.Reals.MultiplyByParameter used above. If a product line uses different names for the inputs,
outputs and parameters, then they can be replaced.

Moreover, certain transformations that do not change the response of the block are permissible: For example, consider
the PID controller in the CDL library. The implementation has a parameter for the time constant of the integrator block.
If a control vendor requires the specification of an integrator gain rather than the integrator time constant, then such a
parameter transformation can be done during the translation, as both implementations yield an identical response.

11.6.2 Substitutions that Change the Control Response

If a control vendor likes to use for example a different implementation of the anti-windup in a PID controller, then such a
substitution will cause the verification to fail if the control responses differ between the CDL-compliant specification and
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the vendor’s implementation.

Therefore, if a customer requires the implemented control sequence to comply with the specification, then the workflow
shall be such that the control provider provides an executable implementation of its controller, and the control provider
shall ask the customer to replace in the control specification the PID controller from the CDL library with the PID controller
provided by the control provider. Afterwards, verification can be conducted as usual.

Note: Such an executable implementation of a vendor’s PID controller can be made available by publishing the controller
or by contributing the controller to the Modelica Buildings Library. The implementation of the control logic can be done
either using other CDL blocks, which is the preferred approach, using the C language, or by providing a compiled library.
See the Modelica Specification [Mod23] for implementation details if C code or compiled libraries are provided. If a
compiled library is provided, then binaries shall be provided for Windows 32/64 bit, Linux 32/64 bit, and OS X 64 bit.

11.6.3 Adding Blocks that are not in the CDL Library

If a control vendor likes to use a block that is not in the CDL library, such as a block that uses machine learning to schedule
optimal warm-up, then such an addition must be approved by the customer. If the customer requires the part of the control
sequence that contains this block to be verified, then the block shall be made available as described in Section 11.6.2.
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Chapter 12

Verification

12.1 Introduction

This section describes how to formally verify whether the control sequence is implemented according to specification.
This process would be done as part of the commissioning, as indicated in step 9 in the process diagram Fig. 3.1. For the
requirements, see Section 5.3.

For clarity, we note that verification tests whether the implementation of the control sequence conforms with its specifi-
cation. In contrast, validation would test whether the control sequence, together with the building system, is such that it
meets the building owner’s need. Hence, validation would be done in step 2 in Fig. 3.1.

As this step only verifies that the control logic is implemented correctly, it should be conducted in addition to other functional
tests, such as tests that verify that sensor and actuators are connected to the correct inputs and outputs, that sensors are
installed properly and that the installed mechanical system meets the specification.

12.2 Terminology

We will use the following terminology, see also Section 7 for more details.

By a real controller, we mean a control device implemented in a building automation system.

By a controller, we mean a Modelica block that conforms to the CDL specification and that contains a control sequence.

By input and output, we mean the input connectors (or ports) and output connector (or ports) of a (real) controller.

By input value or output value, we mean the value that is present at an input or output connector at a given time instant.

By time series, we mean a series of values at successive times. The time stamps of the series need not be equidistant,
but they need to be non-decreasing, e.g., we allow for time series with two equal time stamps to indicate when a values
switches.

By signal, we mean a function that maps time to a value.

By parameter, we mean a configuration value of a controller that is constant, unless it is changed by an operator or by the
user who runs the simulation. Typical parameters are sample times, dead bands or proportional gains.
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12.3 Scope of the Verification

For OpenBuildingControl, we currently only verify the implementation of the control sequence. The verification is done
by comparing output time series between a real controller and a simulated controller for the same input time series and
the same control parameters. The comparison checks whether the difference between these time series are within a
user-specified tolerance. Therefore, with our tests, we aim to verify that the control provider implemented the sequence
as specified, and that it executes correctly.

Outside the scope of our verification are tests that verify whether the I/O points are connected properly, whether the
mechanical equipment is installed and functions correctly, and whether the building envelope is meeting its specification.

12.4 Methodology

A typical usage would be as follows: A commissioning agent exports trended control input and output time series and
stores them in a CSV file. The commissioning agent then executes the CDL specification for the trended input time series,
and compares the following:

1. Whether the trended output time series and the output time series computed by the CDL specification are close to
each other.

2. Whether the trended input and output time series lead to the right sequence diagrams, for example, whether an
airhandler’s economizer outdoor air damper is fully open when the system is in free cooling mode.

Technically, step 2 is not needed if step 1 succeeds. However, feedback from mechanical designers indicate the desire to
confirm during commissioning that the sequence diagrams are indeed correct (and hence the original control specification
is correct for the given system).

Fig. 12.1 shows the flow diagram for the verification. Rather than using real-time data through BACnet or other protocols,
set points, input time series and output time series of the actual controller are stored in an archive, here a CSV file.
This allows to reproduce the verification tests, and it does not require the verification tool to have access to the actual
building control system. During the verification, the archived time series are read into a Modelica model that conducts
the verification. The verification will use three blocks. The block labeled input file reader reads the archived time series,
which may typically be in CSV format. As this data may be directly written by a building automation system, its units
will differ from the units used in CDL. Therefore, the block called unit conversion converts the data to the units used in
the CDL control specification. Next, the block labeled control specification is the control sequence specification in CDL
format. This is the specification that was exported during design and sent to the control provider. Given the set points
and measurement time series, it outputs the control time series according to the specification. The block labeled time
series verification compares these time series with trended control time series, and indicates where the time series differ
by more than a prescribed tolerance in time and in control variable value. The block labeled sequence chart creates x-y or
scatter plots. These can be used to verify for example that an economizer outdoor air damper has the expected position
as a function of the outside air temperature.

Below, we will further describe the blocks in the box labeled verification.

Note: We also considered testing criteria such as “whether room temperatures are satisfactory” or “a damper control
signal is not oscillating”. However, discussions with design engineers and commissioning providers showed that there
is currently no accepted method for turning such questions into hard requirements. We implemented software that tests
criteria such as “Room air temperature shall be within the setpoint ±0.5 Kelvin for at least 45 min within each 60 minute
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Fig. 12.1: Overview of the verification that tests whether the installed control sequence meets the specification.

window.” and “Damper signal shall not oscillate more than 4 times per hour between a change of ±0.025 (for a 2 minute
sample period)”. Software implementations of such tests are available on the Modelica Buildings Library github repository,
commit 454cc75.

Besides these tests, we also considered automatic fault detection and diagnostics methods that were proposed for in-
clusion in ASHRAE RP-1455 and Guideline 36, and we considered using methods such as in [Ver13] that automatically
detect faulty regulation, including excessively oscillatory behavior. However, as it is not yet clear how sensitive these
methods are to site-specific tuning, and because field tests are ongoing in a NIST project, we did not implement them.

12.5 Modules of the Verification Test

To conduct the verification, the following models and tools are used.

12.5.1 CSV File Reader

To read CSV files, the data reader Modelica.Blocks.Sources.CombiTimeTable from the Modelica Standard Library
can be used. It requires the CSV file to have the following structure:

#1

# comment line

double tab1(6,2)

# time in seconds, column 1

0 0

1 0

1 1

2 4

3 9

4 16
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Note, that the first two characters in the file need to be #1 (a line comment defining the version number of the file format).
Afterwards, the corresponding matrix has to be declared with type double, name and dimensions. Finally, in successive
rows of the file, the elements of the matrix have to be given. The elements have to be provided as a sequence of numbers
in row-wise order (therefore a matrix row can span several lines in the file and need not start at the beginning of a line).
Numbers have to be given according to C syntax (such as 2.3, -2, +2.e4). Number separators are spaces, tab, comma,
or semicolon. Line comments start with the hash symbol (#) and can appear everywhere.

12.5.2 Unit Conversion

Building automation systems store physical quantities in various units. To convert them to the units used by Modelica and
hence also by CDL, we developed the package Buildings.Controls.OBC.UnitConversions. This package provides
blocks that convert between SI units and units that are commonly used in the HVAC industry.

12.5.3 Comparison of Time Series Data

We have been developing a tool called funnel to conduct time series comparison. The tool imports two CSV files, one
containing the reference data set and the other the test data set. Both CSV files contain time series that need to be
compared against each other. The comparison is conducted by computing a funnel around the reference curve. For this
funnel, users can specify the tolerances with respect to time and with respect to the trended quantity. The tool then checks
whether the time series of the test data set is within the funnel and computes the corresponding exceeding error curve.

The tool is available from https://github.com/lbl-srg/funnel.

It is primarily intended to be used by means of a Python binding. This can be done in two ways:

• Import the module pyfunnel and use the compareAndReport and plot_funnel functions. Fig. 12.2 shows a
typical plot generated by use of these functions.

• Run directly the Python script from terminal. For usage information, run python pyfunnel.py --help.

For the full documentation of the funnel software, visit https://github.com/lbl-srg/funnel

12.5.4 Verification of Sequence Diagrams

To verify sequence diagrams we developed the Modelica package Buildings.Utilities.IO.Plotters. Fig. 12.3
shows an example in which this block is used to produce the sequence diagram shown in Fig. 12.4. While in this ex-
ample, we used the control output time series of the CDL implementation, during commissioning, one would use the
controller output time series from the building automation system. The model is available from the Modelica Buildings
Library, see the model Buildings.Utilities.Plotters.Examples.SingleZoneVAVSupply_u.

Simulating the model shown in Fig. 12.3 generates an html file that contains the scatter plots shown in Fig. 12.5.

12.6 Example

In this example we validated a trended output time series of a control sequence that defines the cooling coil valve position.
The cooling coil valve sequence is a part of the ALC EIKON control logic implemented in building 33 on the main LBNL
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Fig. 12.2: Typical plot generated by pyfunnel.plot_funnel for comparing test and reference time series.
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Fig. 12.5: Scatter plots that show the control sequence diagram generated from the simulated sequence.

campus in Berkeley, CA. The subsequence is shown in Fig. 12.6. It comprises a PI controller that tracks the supply air
temperature, an upstream subsequence that enables the controller and a downstream output limiter that is active in case
of low supply air temperatures.

We created a CDL specification of the same cooling coil valve position control sequence, see Fig. 12.7, to validate the
trended output time series. We trended controller inputs and outputs in 5 second intervals for

• Supply air temperature in [F]
• Supply air temperature setpoint in [F]
• Outdoor air temperature in [F]
• VFD fan enable status in [0/1]
• VFD fan feedback in [%]
• Cooling coil valve position, which is the output of the controller, in [%].

The trended input and output time series were processed with a script that converts them to the format required by the
data readers. The data used in the example begins at midnight on June 7 2018. In addition to the trended input and
output time series, we recorded all parameters, such as the hysteresis offset (see Fig. 12.8) and the controller gains (see
Fig. 12.9), to use them in the CDL controller.

We configured the CDL PID controller parameters such that they correspond to the parameters of the ALC PI controller.
The ALC PID controller implementation is described in the ALC EIKON software help section, while the CDL PID controller
is described in the info section of the model Buildings.Controls.OBC.CDL.Reals.LimPID. The ALC controller tracks the
temperature in degree Fahrenheit, while CDL uses SI units. An additional implementation difference is that for cooling
applications, the ALC controller uses direct control action, whereas the CDL controller needs to be configured to use
reverse control action, which can be done by setting its parameter reverseAction=true. Furthermore, the ALC controller
outputs the control action in percentages, while the CDL controller outputs a signal between 0 and 1. To reconcile
the differences, the ALC controller gains were converted for CDL as follows: The proportional gain kp,cdl was set to
kp,cdl = u kp,alc , where u = 9/5 is a ratio of one degree Celsius (or Kelvin) to one degree Fahrenheit of temperature
difference. The integrator time constant was converted as Ti ,cdl = kp,cdl Ialc/(u ki ,alc). Both controllers were enabled
throughout the whole validation time.

Fig. 12.10 shows the Modelica model that was used to conduct the verification. On the left hand side are the data readers
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Fig. 12.6: ALC EIKON specification of the cooling coil valve position control sequence.

that read the trended input and output time series from files. Next are unit converters, and a conversion for the fan status
between a real value and a boolean value. These data are fed into the instance labeled cooValSta, which contains the
control sequence as shown in Fig. 12.7. The plotters on the right hand side then compare the simulated cooling coil valve
position with the trended time series.

Fig. 12.11, which was produced by the Modelica model using blocks from the Buildings.Utilities.Plotters package,
shows the trended input temperatures for the control sequence, the trended and simulated cooling valve control signal
for the same time period, which are practically on top of each other, and a correlation error between the trended and
simulated cooling valve control signal.

The difference in modeled vs. trended results is due to the following factors:

• ALC EIKON uses a discrete time step for the time integration with a user-defined time step length, whereas CDL
uses a continuous time integrator that adjusts the time step based on the integration error.

• ALC EIKON uses a proprietary algorithm for the anti-windup, which differs from the one used in the CDL implemen-
tation.

Despite these differences, the computed and the simulated control signals show good agreement, which is also demon-
strated by verifying the time series with the funnel software, whose output is shown in Fig. 12.12.

12.7 Specification for Automating the Verification

The example Section 12.6 describes a manual process of composing the verification model and executing the verification
process. In this section, we provide specifications for how this process can be automated. The automated workflow uses
the same modules as in Section 12.6, except that the unit conversion will need to be done by the tool that reads the CSV
files and sends data to the Building Automation System, and that reads data from the Building Automation System and
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Fig. 12.7 : CDL specification of the cooling coil valve position control sequence.

Fig. 12.8: ALC EIKON outdoor air temperature hysteresis to enable/disable the controller.
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Fig. 12.9: ALC EIKON PI controller parameters.
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Fig. 12.11: Verification of the cooling valve control signal between ALC EIKON computed signal and simulated signal.
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Fig. 12.12: Verification of the cooling valve control signal with the funnel software (error computed with an absolute tolerance in time
of 1 s and a relative tolerance in y of 1%).
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writes them to the CSV files. This design decision has been done because CDL provides all required unit information, but
this is not the case in general for a building automation system. Moreover, in the process described in this section, the
CSV files will be read directly by the Modelica simulation environment rather than using the CSV file reader described in
Section 12.5.1.

12.7.1 Use Cases

We address two use cases. Both uses cases verify conformance of the time series generated by a control control
sequence specified in CDL against the time series of an implementation of a real controller. For both use cases, the
precondition is that one control sequence, or several control sequences, are available in CDL. The output will be a
report that describes whether the real implementation conforms to the CDL implementation within a user-specified error
tolerance. The difference between the two uses cases is as follows: In scenario 1, the CDL model contains the controller
that is connected to upstream blocks that generate the control input time series. The time series from this CDL model will
be used to test the real controller. In scenario 2, data trended from a real controller will be used to verify the controller
against the output time series of its CDL specification, using as inputs and parameters of the CDL specification the trended
time series and parameters of the real controller.

To conduct the verification, the following three steps will be conducted:

1. Specify the test setup,
2. generate data from the real controller, and
3. produce the test results.

Next, we will describe the specifications for the two scenarios. The specifications focus on the CDL side. In addition, for
Scenario 1, steps 5 & 6, and for Scenario 2, steps 3 & 4, a data collection tool need to be developed that utilizes the JSON
and CSV files described below and does the following to generate the data from the real controller:

1. Identifies which objects in the building automation system match with the desired collection.
2. Shows the user a list of all objects that don’t match and a list of objects from the building automation system and

allows for the user to manually match them.
3. Sets up the data collection.
4. Starts collecting data at the desired intervals.
5. Store the data.
6. Export the desired data in the format specified below.

Note: In support of this step, work is ongoing in exporting semantic information from the CDL implementation.

12.7.2 Scenario 1: Control Input Obtained by Simulating a CDL Model

For this scenario, we verify whether a real controller outputs time series that are similar to the time series of a controller
that is implemented in a CDL model. The inputs of the real controller will be connected to the time series that were
exported when simulating a controller that is connected to upstream blocks that generate the control input time series.

An application of this use case is to test whether a controller complies with the sequences specified in CDL for a given
input time series and control parameters, either as part of verifying correct implementation during control development, or
verifying correct implementation in a Building Automation System that allows overwriting control input time series.
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We have also developed a verification tool for verifying the control sequences implemented in a controller using CDL.

For this scenario, we are given the following data:

i. A list of CDL models to be tested.
ii. Relative and absolute tolerances, either for all output variables, or optionally for individual output variables of the

sequence.
iii. Optionally, a boolean variable in the model that we call an indicator variable. An indicator variable allows to indicate

when to pause a test, such as during a fast transient, and when to resume the test, for example when the controls
is expected to have reached steady-state. If its value is true, then the output should be tested at that time instant,
and if it is false, the output must not be tested at that time instant.

For example, consider the validation test OBC.ASHRAE.G36.AHUs.SingleZone.VAV.SetPoints.Validation.Supply_u. and
suppose we want to verify the sequences of its instances setPoiVAV and setPoiVAV1. To do so, we first write a specifi-
cation as shown in Listing 12.1.

Listing 12.1: Configuration of test setup.

{

"references": [

{

"model": "Buildings.Controls.OBC.ASHRAE.G36.AHUs.SingleZone.VAV.SetPoints.Validation.

→˓Supply_u",

"generateJson": false,

"sequence": "setPoiVAV",

"pointNameMapping": "realControllerPointMapping.json",

"runController": false,

"controllerOutput": "test/real_outputs.csv"

},

{

"model": "Buildings.Controls.OBC.ASHRAE.G36.AHUs.SingleZone.VAV.SetPoints.Validation.

→˓Supply_u",

"generateJson": true,

"sequence": "setPoiVAV1",

"pointNameMapping": "realControllerPointMapping.json",

"runController": true,

"controllerOutput": "test/real_outputs.csv",

"outputs": {

"setPoiVAV1.TSup*": { "atoly": 0.5 }

},

"indicators": {

"setPoiVAV1.TSup*": [ "fanSta.y" ]

},

"sampling": 60

}

],

"modelJsonDirectory": "test",

"tolerances": { "rtolx": 0.002, "rtoly": 0.002, "atolx": 10, "atoly": 0 },
(continues on next page)
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(continued from previous page)

"sampling": 120,

"controller": {

"networkAddress": "192.168.0.115/24",

"deviceAddress": "192.168.0.227",

"deviceId": 240001

}

}

This specifies two tests, one for the controller setPoiVAV and one for setPoiVAV1. In this example, setPoiVAV and
setPoiVAV1 happen to be the same sequence, but their input time series and/or parameters are different, and therefore
their output time series will be different. The generateJson flag will determine if the json translation for the specified
model under test must be generated during the test using the modelica-json tool. If it is set to false, the software
assumes that the json translation is already present in modelJsonDirectory. The test for setPoiVAV will use the globally
specified tolerances, and use a sampling rate of 120 seconds. The mapping of the variables to the I/O points of the real
controller is provided in the file realControllerPointMapping.json, shown in Listing 12.2. The test setPoiVAV will
not run the controller during the test because of the specification runController = false. Rather, it will use the saved
results test/real_outputs.csv from a previous run. The test for setPoiVAV1 will use different tolerances on each
output variable that matches the regular expression setPoiVAV1.TSup*. Moreover, for each variable that matches the
regular expression setPoiVAV1.TSup*, the verification will be suspended whenever fanSta.y = false. The sampling
rate is 60 seconds. This test will also use realControllerPointMapping.json to map the variables to points of the
real controller. Because runController = true, this test will run the controller in real-time and save the time-series
of the output variables in the file specified by controllerOutput. The real controller’s network configuration can be
found under the controller section of the configuration. The networkAddress is the controller’s BACnet subnet, the
deviceAddress is the controller’s IP address and the deviceId is the controller’s BACnet device identifier. The tolerances
rtolx and atolx are relative and absolute tolerances in the independent variable, e.g., in time, and rtoly and atoly

are relative and absolute tolerances in the control output variable.

Listing 12.2: Example pointNameMapping file.

[

{

"cdl": { "name": "TZonCooSetOcc", "unit": "K", "type": "float"},

"device": {"name": "Occupied Cooling Setpoint_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "TZonHeaSetOcc", "unit": "K", "type": "float"},

"device": {"name": "Occupied Heating Setpoint_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "TZonCooSetUno", "unit": "K", "type": "float"},

"device": {"name": "Unoccupied Cooling Setpoint_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "TZonHeaSetUno", "unit": "K", "type": "float"},

"device": {"name": "Unoccupied Heating Setpoint_1", "unit": "degF", "type": "float"}

},
(continues on next page)
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(continued from previous page)

{

"cdl": { "name": "setAdj", "unit": "K", "type": "float"},

"device": {"name": "setpt_adj_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "heaSetAdj", "unit": "K", "type": "float"},

"device": {"name": "Heating Adjustment_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "uOccSen", "type": "int"},

"device": {"name": "occ_sensor_bni_1", "type": "bool"}

},

{

"cdl": { "name": "uWinSta", "type": "int"},

"device": {"name": "window_sw_1", "type": "bool"}

},

{

"cdl": { "name": "TZonCooSet", "unit": "K", "type": "float"},

"device": {"name": "Effective Cooling Setpoint_1", "unit": "degF", "type": "float"}

},

{

"cdl": { "name": "TZonHeaSet", "unit": "K", "type": "float"},

"device": {"name": "Effective Heating Setpoint_1", "unit": "degF", "type": "float"}

}

]

Listing 12.2 is an example of the pointNameMapping file. It is a list of dictionaries, with each dictionaries having two
parts: The cdl part specifies the name, the unit and the type of the point in the CDL sequence. Similarly, the device

part specifies this information for the corresponding point in the real controller. The type refers to the data type of the
variable in the specific context, i.e., in CDL or in the actual controller. It should also be noted that some points may not
have a unit, but only have a type. For example, the input uOccSen is a CDL point that is 1 if there is occupancy and 0
otherwise.

To create test input and output time series, we generate CSV files. This needs to be done for each controller (or control
sequence) under test, and we will explain it only for the controller setPoiVAV. For brevity, we call OBC.ASHRAE.G36.AHUs.
SingleZone.VAV.SetPoints.Validation.Supply_u simply Supply_u.

Once we have the configuration and the pointNameMapping file set up, the sequence verification (handled by the verifi-
cation tool) goes through the following steps:

1. Generate a json translation of the modelica code. Currently the verification tool does invoke the modelica-json tool
from within itself, depending on the generateJson flag in the configuration (and stores the output in the directory
mentioned under modelJsonDirectory). The user can themselves invoke the modelica-json tool using:

node app.js -f Buildings/Controls/OBC/ASHRAE/G36/AHUs/SingleZone/VAV/SetPoints/Validation/

→˓Supply_u.mo -o json -d test

This will produce Supply_u.json (file name is abbreviated) in the output directory test. See https://github.com/
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lbl-srg/modelica-json for the json schema.
2. From Supply_u.json, extract all input and output variable declarations of the instance setPoiVAV and generate an

I/O list . The tool also extracts public parameters of the instance setPoiVAV and stores them. For this sequence,
the public parameters are TSupSetMax, TSupSetMin, yHeaMax, yMin and yCooMax.

3. Obtain reference time series by simulating Supply_u.mo with time series of all input, output and indicator time
series. The verification tool accomplishes this by using the free open-source tool OpenModelica. The verification
tool will create Modelica scripts to translate the model, followed by one to simulate the model. This will produce a
Supply_u_res.mat file, from which the tool will extract the timeseries of the inputs and the outputs and store it as
Supply_u_res.csv.
More information about the python script used to run the OpenModelica simulation can be found at software/verifi-
cation/openmodelica_sim.py.

4. Using the input and output variables extracted for the sequence setPoiVAV, the verification tool then separates the
input and the output timeseries (reference outputs).

5. Steps 6 and 7 are applied only if runController flag in the test configuration file is set to True. Else, the tool will use
the real outputs previously generated by the controller and saved in the file mentioned under controllerOutput.
Proceed to step 8.

6. If the runController flag is True, the verification applies the parameters that have been extracted to the real con-
troller, and runs the real controller for the input time series extracted in the step above. Using the pointNameMapping

file, the tool will also handle the unit conversions and the type conversions on the time series as needed for the con-
troller under test.

7. As the controller is being set different input values, the output variables are trended and saved to
setPoiVAV_real_outputs.csv. The point names, units and the types of the output time series will also be con-
verted to match the CDL input timeseries as specified in the pointNameMapping file.

8. Produce the test results by running the funnel software (https://github.com/lbl-srg/funnel) for each time series of
the output variables generated by the controller (setPoiVAV_output.csv or file in controllerOutput) against
the corresponding output variables generated by the CDL simulation. Before sending the time series to the funnel
software, set the value of the reference and the controller output to zero whenever the indicator function is zero for
that time stamp. This will exclude the value from the verification. This will give, for each time series, output files that
show where the error exceeds the specified tolerance.

The sequence above can be run for each test case, and the results from step 8 are to be used to generate a test report
for all tested sequences.

An example of a sequence under test, along with real inputs from a controller have been included in the verification tool
software. Please see software/verification for how to automate this process.

12.7.3 Scenario 2: Control Input Obtained by Trending a Real Controller

For this scenario, we verify whether a real controller produces time series that are similar to the time series of a controller
that is implemented in a CDL model. As control input time series, the time series trended from the real controller are used.

An applications of this use case is to test if a controller complies with the sequences specified in CDL for already trended
data.

For this scenario, we are given the following data:

i. The CDL class name of the control sequence to be tested, in our example Buildings.Controls.OBC.ASHRAE.

G36.AHUs.SingleZone.VAV.SetPoints.Supply.
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ii. Relative and absolute tolerances, either for all output variables, or optionally for individual output variables of the
sequence.

Therefore, a test specification looks as shown in Listing 12.3, which is identical to Listing 12.1, except that the elements
indicator and sampling are removed because a sequence cannot have an indicator function, and because CDL simulators
control the accuracy and hence a sampling time step is not needed. However, a time series for an indicator function can
be provided, see step 4 below.

Listing 12.3: Specification of test setup.

references : [

{ "model": "Buildings.Controls.OBC.ASHRAE.G36.AHUs.SingleZone.VAV.SetPoints.Supply" },

"tolerances": {"atoly": 0.5, "variable": "TSup*" },

}

],

"tolerances": {"rtolx": 0.002, "rtoly": 0.002, "atolx": 10, "atoly": 0},

Note that we allow for multiple entries in references to allow testing more than one sequence.

To create test input and output time series, we generate again CSV files. This needs to be done for each control sequence.
Here, we only explain it for the one sequence shown in Listing 12.3.

The procedure is as follows:

1. Produce the json file Supply.json (name abbreviated) by running modelica-json as

node app.js -f Buildings/Controls/OBC/ASHRAE/G36/AHUs/SingleZone/VAV/SetPoints/Supply.mo -

→˓o json -d test1

2. Generate the list of input and output variable declarations reference_io.json and the parameter list
reference_parameters.json as in Step 2 in Section 12.7.2.

3. Trend the input and output time series specified in reference_io.json from the real controller, trending as input
time series whatever the controller receives from the actual building automation system. (However, make sure there
is reasonable excitation of the control input.)

4. Convert the trended input time series of the real controller to the units specified in reference_io.json, and write
the converted input time series to a new file reference_input.csv, using the format

time, uHea, uCoo, TZonSet, TZon, TOut, uFan

0, 1, 0, 293.15, 292.15, 283.15, 1

60, 0.5, 0, 293.15, 292.15, 283.15, 1

120, 0, 0.5, 293.15, 292.15, 283.15, 1

180, 0, 1, 293.15, 292.15, 283.15, 1

3600, 0, 1, 293.15, 292.15, 283.15, 1

where the first column is time in seconds.
Do the same for the trended output time series of the real controller and store them in the new file
controller_output.csv that has the same format as reference_input.csv

Optionally, also store one or several indicator time series in indicator.csv, with the header of each time series
being the name of the control output variable whose verification should be suspended whenever the indicator time
series is 0 at that time instant. For example, to suspend the verification of an output called TSupCoo between t = 120
and t = 600 seconds, the file indicator.csv looks like
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time, TSupCoo

0, 1

120, 0

600, 1

5. Convert the parameter values for TSupSetMax, TSupSetMin, yHeaMax, yMin and yCooMax as used in the real con-
troller to the units specified in reference_parameters.json and store them in a text file reference_parameters.

txt. For our example, suppose this file is

TSupSetMax=303.15

TSupSetMin=289.15

yHeaMax=0.7

yMin=0.3

yCooMax=1

6. Simulate the sequence specified in the class definition Supply.mo, using the parameter values from
reference_parameters.txt and the input time series from reference_input.csv.
This can be accomplished with the free open-source tool OpenModelica by running

#~/bin/bash

set -e

export OPENMODELICALIBRARY=`pwd`:/usr/lib/omlibrary

python3 -i simulateCDL.py

rm -f Buildings.* 2&> /dev/null

with the file simulateCDL.py being

import shutil
import os
from OMPython import OMCSessionZMQ

model="Buildings.Controls.OBC.ASHRAE.G36.AHUs.SingleZone.VAV.SetPoints.Supply"

parameters="(TSupSetMax=303.15, TSupSetMin=289.15, yHeaMax=0.7, yMin=0.3, yCooMax=1)"

omc = OMCSessionZMQ()

omc.sendExpression("loadModel(Buildings)")

omc.sendExpression("simulate({}, startTime=0, stopTime=3600, simflags=\"-csvInput␣
→˓reference_input.csv\", outputFormat=\"csv\")".format(model))
shutil.move("{}_res.csv".format(model), "reference.csv")

This will produce the CSV file reference.csv that contains all control input and output time series.
7. Produce the test results as in Step 7 in Section 12.7.2.

The sequence above can be run for each test case, and the results from step 7 are to be used to generate a test report
for all tested sequences.
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Chapter 13

Generating a Modelica Model from Semantic
Model

In this section, we will specify how to generate a Modelica model from a semantic model of a building or a Heating, Venti-
lation and Air Conditioing (HVAC) system. This Modelica model then serves as the format from which control sequences
(CDL and CXF), point lists, etc. can be exported.

Building semantic models provide information about the equipment topology and how they are connected. Semantic
models enable assigning machine-readable metadata to control points and enable the development of portable analytics
and control applications.

13.1 Workflow

The current workflow for generating a Modelica model (along with the control sequences) leverages the Templates
package of in the Modelica Buildings Library (https://simulationresearch.lbl.gov/modelica/releases/v11.0.0/help/Buildings_
Templates.html). As of Buildings version 11, there are three system templates - one for an Air Handling Unit (AHU), one
for a Variable Air Volume (VAV) terminal and one for an air source heat pump plant. As the templates are used to generate
the Modelica models, only these types of systems are covered. The process is described in Fig. 13.1

The software that implements this workflow is available at https://github.com/lbl-srg/obc/tree/master/software/s223ToMo.

13.2 Example

From a ASHRAE Standard 223P semantic model that describes two VAV boxes, Fig. 13.2 describes the workflow to query
the necessary sensors and instantiate the corresponding Modelica models using the VAVBox template from the Modelica
Buildings Library.
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Fig. 13.1: Flowchart describing the workflow of generating a Modelica file from a semantic model of a HVAC system.
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Fig. 13.2: Flowchart describing the workflow of generating a Modelica model of two VAVBoxes described using the proposed ASHRAE
Standard 223P.
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Chapter 14

Example Application

14.1 Introduction

In this section, we compare the performance of two different control sequences. The objectives are to demonstrate the
setup for closed loop performance assessment, to demonstrate how to compare control performance, and to assess the
difference in annual energy consumption.

As a test case, we used a simulation model that consists of five thermal zones that are representative of one floor of the
new construction medium office building for Chicago, IL, as described in the set of DOE Commercial Building Benchmarks
[DFS+11]. There are four perimeter zones and one core zone. The envelope thermal properties meet ASHRAE Standard
90.1-2004. The system model consist of an HVAC system, a building envelope model [WZN11] and a model for air
flow through building leakage and through open doors based on wind pressure and flow imbalance of the HVAC system
[Wet06]. Thus, at every simulation step, a full pressure drop calculation is done to compute the air flow distribution based
on damper positions, fan control signal and fan curve.

For the base case, we implemented a control sequence published in ASHRAE’s Sequences of Operation for Common
HVAC Systems [ASH06]. For the other case, we implemented the control sequence published in ASHRAE Guideline 36
[ASHRAE16]. The main conceptual differences between the two control sequences, which are described in more detail in
Section 14.2.5, are as follows:

• The base case uses two different but constant supply air temperature setpoints for heating and cooling during occu-
pied hours, whereas Guideline 36 case resets the supply air temperature setpoint based on outdoor air temperature
and zone cooling requests, as obtained from the VAV terminal unit controllers. The reset is using the trim and
respond logic.

• The base case resets the supply fan static pressure setpoint based on the VAV damper positions, whereas the
Guideline 36 case resets the fan static pressure setpoint based on zone pressure requests from the VAV terminal
controllers. The reset is using the trim and respond logic.

• The base case controls the economizer to track a mixed air temperature setpoint, whereas Guideline 36 controls
the economizer based on supply air temperature control loop signal.

• The base case controls the VAV dampers based on the zone’s cooling temperature setpoint, whereas Guideline 36
uses the heating and cooling loop signal to control the VAV dampers.

The next sections are as follows: In Section 14.2 we describe the methodology, the models and the performance metrics,
in Section 14.3 we compare the performance, in Section 14.4 we recommend improvements to the Guideline 36 and in
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Section 14.5 we discuss the main findings and present concluding remarks.

14.2 Methodology

All models are implemented in Modelica, using models from the Buildings library [WZNP14]. The models are available
from https://github.com/lbl-srg/modelica-buildings/releases/tag/v5.0.0

14.2.1 HVAC Model

The HVAC system is a variable air volume (VAV) flow system with economizer and a heating and cooling coil in the air
handler unit. There is also a reheat coil and an air damper in each of the five zone inlet branches.

Fig. 14.1 shows the schematic diagram of the HVAC system.
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+ + + + +

fan
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airflow
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Fig. 14.1: Schematic diagram of the HVAC system.

In the VAV model, all air flows are computed based on the duct static pressure distribution and the performance curves of
the fans. The fans are modeled as described in [Wet13].

14.2.2 Envelope Heat Transfer

The thermal room model computes transient heat conduction through walls, floors and ceilings and long-wave radiative
heat exchange between surfaces. The convective heat transfer coefficient is computed based on the temperature dif-
ference between the surface and the room air. There is also a layer-by-layer short-wave radiation, long-wave radiation,
convection and conduction heat transfer model for the windows. The model is similar to the Window 5 model. The physics
implemented in the building model is further described in [WZN11].

There is no moisture buffering in the envelope, but the room volume has a dynamic equation for the moisture content.
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Fig. 14.2: Internal load schedule.

14.2.3 Internal Loads

We use an internal load schedule as shown in Fig. 14.2, of which 20% is radiant, 40% is convective sensible and 40% is
latent. Each zone has the same internal load per floor area.

14.2.4 Multi-Zone Air Exchange

Each thermal zone has air flow from the HVAC system, through leakages of the building envelope (except for the core
zone) and through bi-directional air exchange through open doors that connect adjacent zones. The bi-directional air
exchange is modeled based on the differences in static pressure between adjacent rooms at a reference height plus the
difference in static pressure across the door height as a function of the difference in air density. Air infiltration is a function
of the flow imbalance of the HVAC system. The multizone airflow models are further described in [Wet06].

14.2.5 Control Sequences

For the above models, we implemented two different control sequences, which are described below. The control se-
quences are the only difference between the two cases.

For the base case, we implemented the control sequence VAV 2A2-21232 of the Sequences of Operation for Common
HVAC Systems [ASH06]. In this control sequence, the supply fan speed is modulated to maintain a duct static pressure
setpoint. The duct static pressure setpoint is adjusted so that at least one VAV damper is 90% open. The economizer
dampers are modulated to track the setpoint for the mixed air dry bulb temperature. The supply air temperature setpoints
for heating and cooling are constant during occupied hours, which may not comply with some energy codes. Priority
is given to maintain a minimum outside air volume flow rate. In each zone, the VAV damper is adjusted to meet the
room temperature setpoint for cooling, or fully opened during heating. The room temperature setpoint for heating is
controlled by varying the water flow rate through the reheat coil. There is also a finite state machine that transitions
the mode of operation of the HVAC system between the modes occupied, unoccupied off, unoccupied night set back,
unoccupied warm-up and unoccupied pre-cool. Local loop control is implemented using proportional and proportional-
integral controllers, while the supervisory control is implemented using a finite state machine.
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For the detailed implementation of the control logic, see the model Buildings.Examples.VAVReheat.ASHRAE2006, which
is also shown in Fig. 14.6.

Our implementation differs from VAV 2A2-21232 in the following points:

• We removed the return air fan as the building static pressure is sufficiently large. With the return fan, building static
pressure was not adequate.

• In order to have the identical mechanical system as for the Guideline 36 case, we do not have a minimum outdoor
air damper, but rather controlled the outdoor air damper to allow sufficient outdoor air if the mixed air temperature
control loop would yield too little outdoor air.

For the Guideline 36 case, we implemented the multi-zone VAV control sequence based on [ASHRAE16].
Fig. 14.3 shows the sequence diagram, and the detailed implementation is available in the model Build-
ings.Examples.VAVReheat.Guideline36.

In the Guideline 36 sequence, the duct static pressure is reset using trim and respond logic based on zone pressure reset
requests, which are issued from the terminal box controller based on whether the measured flow rate tracks the set point.
The implementation of the controller that issues these system requests is shown in Fig. 14.4. The economizer dampers
are modulated based on a control signal for the supply air temperature set point, which is also used to control the heating
and cooling coil valve in the air handler unit. Priority is given to maintain a minimum outside air volume flow rate. The
supply air temperature setpoints for heating and cooling at the air handler unit are reset based on outdoor air temperature,
zone temperature reset requests from the terminal boxes and operation mode.

In each zone, the VAV damper and the reheat coil is controlled using the sequence shown in Fig. 14.5, where THeaSet

is the set point temperature for heating, dTDisMax is the maximum temperature difference for the discharge temperature
above THeaSet, TSup is the supply air temperature, VAct* are the active airflow rates for heating (Hea) and cooling (Coo),
with their minimum and maximum values denoted by Min and Max.

Our implementation differs from Guideline 36 in the following points:

• Guideline 36 prescribes “To avoid abrupt changes in equipment operation, the output of every control loop shall be
capable of being limited by a user adjustable maximum rate of change, with a default of 25% per minute.”
We did not implement this limitation of the output as it leads to delays which can make control loop tuning more
difficult if the output limitation is slower than the dynamics of the controlled process. We did however add a first
order hold at the trim and response logic that outputs the duct static pressure setpoint for the fan speed.

• Not all alarms are included.
• Where Guideline 36 prescribes that equipment is enabled if a controlled quantity is above or below a setpoint, we

added a hysteresis. In real systems, this avoids short-cycling due to measurement noise, in simulation, this is
needed to guard against numerical noise that may be introduced by a solver.

14.2.6 Site Electricity Use

To convert cooling and heating energy as transferred by the coil to site electricity use, we apply the conversion factors
from EnergyStar [Ene13]. Therefore, for an electric chiller, we assume an average coefficient of performance (COP) of
3.2 and for a geothermal heat pump, we assume a COP of 4.0.
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14.2.7 Simulations

Fig. 14.6 shows the top-level of the system model of the base case, and Fig. 14.7 shows the same view for the Guideline
36 model.

The complexity of the control implementation is visible in Fig. 14.4 which computes the temperature and pressure requests
of each terminal box that is sent to the air handler unit control.

All simulations were done with Dymola 2018 FD01 beta3 using Ubuntu 16.04 64 bit. We used the Radau solver with a
tolerance of 10−6. This solver adaptively changes the time step to control the integration error. Also, the time step is
adapted to properly simulate time events and state events.

The base case and the Guideline 36 case use the same HVAC and building model, which is implemented in the base
class Buildings.Examples.VAVReheat.BaseClasses.PartialOpenLoop. The two cases differ in their implementation
of the control sequence only, which is implemented in the models Buildings.Examples.VAVReheat.BaseClasses.

ASHRAE2006 and Buildings.Examples.VAVReheat.BaseClasses.Guideline36.

Table 14.1 shows an overview of the model and simulation statistics. The differences in the number of variables and in
the number of time varying variables reflect that the Guideline 36 control is significantly more detailed than what may
otherwise be used for simulation of what the authors believe represents a realistic implementation of a feedback control
sequence. The entry approximate number of control I/O connections counts the number of input and output connections
among the control blocks of the two implementations. For example, If a P controller receives one set point, one measured
quantity and sends it signal to a limiter and the limiter output is connected to a valve, then this would count as four
connections. Any connections inside the PI controller would not be counted, as the PI controller is an elementary building
block (see Section 7.6) of CDL.

Table 14.1: Model and simulation statistics.

Quantity Base case Guideline 36
Number of components 2826 4400
Number of variables (prior to translation) 33,700 40,400
Number of continuous states 178 190
Number of time-varying variables 3400 4800
Time for annual simulation in minutes 70 100
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Fig. 14.6: Top level view of Modelica model for the base case.

Fig. 14.7 : Top level view of Modelica model for the Guideline 36 case.
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14.3 Performance Comparison
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Fig. 14.8: Comparison of energy use. For the cases labeled ±50%, the internal gains have been increased and decreased as
described in Section 14.2.3.

Table 14.2: Heating, cooling, fan and total site HVAC energy, and savings
of guideline 36 case versus base case.

Eh [kWh/(m2 a)] Ec [kWh/(m2 a)] Ef [kWh/(m2 a)] Etot [kWh/(m2 a)] [%]
6.419 18.98 3.572 28.97
2.912 14.29 1.74 18.94 34.6

Fig. 14.8 and Table 14.2 compare the annual site HVAC electricity use between the annual simulations with the base case
control and the Guideline 36 control. The bars labeled ±50% were obtained with simulations in which we changed the
diversity of the internal loads. Specifically, we reduced the internal loads for the north zone by 50% and increased them
for the south zone by the same amount.

In this case study, the Guideline 36 control saves around 30% site HVAC electrical energy. These are significant savings
that can be achieved through software only, without the need for additional hardware or equipment. Our experience,
however, was that it is rather challenging to program the Guideline 36 sequence due to their complex logic that contains
various mode changes, interlocks and timers. Various programming errors and misinterpretations or ambiguities of Guide-
line 36 were only discovered in closed loop simulations. We therefore believe it is important to provide robust, validated
implementations of Guideline 36 that encapsulates the complexity for the energy modeler and the control provider.

Fig. 14.9 shows the outside air temperature temperature Tout and the global horizontal irradiation Hglo,hor for a period in
winter, spring and summer. These days will be used to compare the trajectories of various quantities of the base case
and the Guideline 36 case.

Fig. 14.10 compares the time trajectories of the room air temperatures. The figures show that the room air temperatures
are controlled within the setpoints for both cases. Small set point violations have been observed due to the dynamic
nature of the control sequence and the controlled process.
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Fig. 14.9: Outside air temperature and global horizontal irradiation for the three periods that will be further used in the analysis.
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Fig. 14.10: Room air temperatures. The white area indicates the region between the heating and cooling setpoint temperatures.
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Fig. 14.11: VAV control signals for the north and south zones. The white areas indicate the day-time operation.
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Fig. 14.11 shows the control signals of the reheat coils yhea and the VAV damper yvav for the north and south zones.

Fig. 14.12 shows the temperatures of the air handler unit. The figure shows the supply air temperature after the fan
Tsup, its control error relative to its set point Tset ,sup, the mixed air temperature after the economizer Tmix and the return
air temperature from the building Tret . A notable difference is that the Guideline 36 sequence resets the supply air
temperature, whereas the base case is controlled for a supply air temperature of 10∘C for heating and 12∘C for cooling.

Fig. 14.13 show reasonable fan speeds and economizer operation. Note that during the winter days 5, 6 and 7, the
outdoor air damper opens. However, this is only to track the setpoint for the minimum outside air flow rate as the fan
speed is at its minimum.

Fig. 14.14 shows the volume flow rate of the fan V̇fan,sup/Vbui , where Vbui is the volume of the building, and of the outside
air intake of the economizer V̇eco,out/Vbui , expressed in air changes per hour. Note that Guideline 36 has smaller outside
air flow rates in cold winter and hot summer days. The system has relatively low air changes per hour. As fan energy is low
for this building, it may be more efficient to increase flow rates and use higher cooling and lower heating temperatures,
in particular if heating and cooling is provided by a heat pump and chiller. We have however not further analyzed this
trade-off.

Fig. 14.15 compares the room air temperatures for the north and south zone for the standard internal loads, and the case
where we reduced the internal loads in the north zone by 50% and increased it by the same amount in the south zone. The
trajectories with subscript ±50% are the simulations with the internal heat gains reduced or increased by 50%. The room
air temperature trajectories are practically on top of each other for winter and spring, but the Guideline 36 sequence shows
somewhat better setpoint tracking during summer. Both control sequences are comparable in terms of compensating for
this diversity, and as we saw in Fig. 14.8, their energy consumption is not noticeably affected.
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Fig. 14.12: AHU temperatures.
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Fig. 14.13: Control signals for the supply fan, outside air damper and return air damper.
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Fig. 14.14: Fan and outside air volume flow rates, normalized by the room air volume.
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Fig. 14.15: Outdoor air and room air temperatures for the north and south zone with equal internal loads, and with diversity added to
the internal loads. The white area indicates the region between the heating and cooling setpoint temperatures.
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14.4 Improvement to Guideline 36 Specification

This section describes improvements that we recommend for the Guideline 36 specification, based on the first public
review draft [ASHRAE16].

14.4.1 Freeze Protection for Mixed Air Temperature

The sequences have no freeze protection for the mixed air temperature.

Guideline 36 states (emphasis added):

If the supply air temperature drops below 4.4∘C (40∘F) for 5 minutes, send two (or more, as required to ensure
that heating plant is active) Boiler Plant Requests, override the outdoor air damper to the minimum position,
and modulate the heating coil to maintain a supply air temperature of at least 5.6∘ C (42∘F). Disable this
function when supply air temperature rises above 7.2∘C (45∘F) for 5 minutes.

Depending on the outdoor air requirements, the mixed air temperature Tmix may be below freezing, which could freeze the
heating coil if it has low water flow rate. Note that the Guideline 36 sequence controls based on the supply air temperature
and not the mixed air temperature. Hence, this control would not have been active.

Fig. 14.16 shows the mixed air temperature and the economizer control signal for cold climate. The trajectories whose
subscripts end in no are without freeze protection control based on the mixed air temperature, as is the case for Guideline
36, whereas for the trajectories that end in with, we added freeze protection that adjusts the economizer to limit the
mixed air temperature. For these simulations, we reduced the outdoor air temperature by 10 Kelvin (18 Fahrenheit)
below the values obtained from the TMY3 weather data. This caused in day 6 and 7 in Fig. 14.16 sub-freezing mixed air
temperatures during day-time, as the outdoor air damper was open to provide sufficient fresh air. We also observed that
outside air is infiltrated through the AHU when the fan is switched off. This is because the wind pressure on the building
causes the building to be slightly below the ambient pressure, thereby infiltrating air through the economizers closed air
dampers (that have some leakage). This causes a mixed air temperatures below freezing at night when the fan is off.
Note that these temperatures are qualitative rather than quantitative results as the model is quite simplified at these small
flow rates, which are about 0.01% of the air flow rate that the model has when the fan is operating.

We therefore recommend adding the following wordings to Guideline 36, which is translated from [Bun86]:

Use a capillary sensor installed after the heating coil. If the temperature after the heating coil is below 4∘C,

1. enable frost protection by opening the heating coil valve,
2. send frost alarm,
3. switch on pump of the heating coil.

The frost alarm requires manual confirmation.

If the temperature at the capillary sensor exceeds 6∘C, close the valve but keep the pump running until the frost alarm is
manually reset. (Closing the valve avoids overheating).

Recknagel [RSS05] adds further:

1. Add bypass at valve to ensure 5% water flow.
2. In winter, keep bypass always open, possibly with thermostatically actuated valve.
3. If the HVAC system is off, keep the heating coil valve open to allow water flow if there is a risk of frost in the AHU

room.
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Fig. 14.16: Mixed air temperature and economizer control signal for Guideline 36 case with and without freeze protection.
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4. If the heating coil is closed, open the outdoor air damper with a time delay when fan switches on to allow heating
coil valve to open.

5. For pre-heat coil, install a circulation pump to ensure full water flow rate through the coil.

14.4.2 Deadbands for Hard Switches

There are various sequences in which the set point changes as a step function of the control signal, such as shown in
Fig. 14.5. In our simulations of the VAV terminal boxes, the switch in air flow rate caused chattering. We circumvented the
problem by checking if the heating control signal remains bigger than 0.05 for 5 minutes. If it falls below 0.01, the timer
was switched off. This avoids chattering. We therefore recommend to be more explicit for where to add hysteresis or time
delays.

14.4.3 Averaging Air Flow Measurements

The Guideline 36 sequence does not seem to prescribe that outdoor airflow rate measurements need to be time averaged.
As such measurements can fluctuate due to turbulence, we recommend to consider averaging this measurement. In the
simulations, we averaged the outdoor airflow measurement over a 5 second moving window (in the simulation, this was
done to avoid an algebraic system of equations, but, in practice, this would filter measurement noise).

14.4.4 Cross-Referencing and Modularization

For citing individual sections or blocks of the Guideline, it would be helpful if the Guideline where available at a permanent
web site as html, with a unique url and anchor to each section. This would allow cross-referencing the Guideline from a
particular implementation in a way that allows the user to quickly see the original specification.

As part of such a restructuring, it would be helpful to the reader to clearly state what are the input signals, what are
configurable parameters, such as the control gain, and what are the output signals. This in turn would structure the
Guideline into distinct modules, for which one could also provide a reference implementation in software.

14.4.5 Lessons Learned Regarding the Simulations

A few lessons regarding simulating such systems have been learned and are reported here. Note that related best
practices are also available at https://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html

• Fan with prescribed mass flow rate: In earlier implementations, we converted the control signal for the fan to a mass
flow rate, and used a fan model whose mass flow rate is equal to its control input, regardless of the pressure head.
During start of the system, this caused a unrealistic large fan head of 4000 Pa (16 inch of water) because the fan
increased its mass flow rate faster than the VAV dampers opened. The large pressure drop also lead to large power
consumption and hence unrealistic temperature increase across the fan.

• Fan with prescribed pressure head: We also tried to use a fan with prescribed pressure head. Similarly as above, the
fan maintains the pressure head as obtained from its control signal, regardless of the volume flow rate. This caused
unrealistic large flow rates in the return duct which has very small pressure drops. (Subsequently, we removed the
return fan as it is not needed for this system.)
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• Time sampling certain physical calculations: Dymola 2018FD01 uses the same time step for all continuous-time
equations. Depending on the dynamics, this can be smaller than a second. Since some of the control samples
every 2 minutes, it has shown to be favorable to also time sample the computationally expensive simulation of
the long-wave radiation network in the rooms. Because surface temperatures change slowly, computing it every 2
minutes suffices. We expect further speed up can be achieved by time sampling other slow physical processes.

• Non-convergence: In earlier simulations, sometimes the solver failed to converge. This was due to errors in the
control implementation that caused event iterations for discrete equations that seemed to have no solution. In
another case, division by zero in the control implementation caused a problem. The solver found a way to work
around this division by zero (using heuristics) but then failed to converge. Since we corrected these issues, the
simulations are stable.

• Too fast dynamics of coil: The cooling coil is implemented using a finite volume model. Heat diffusion among the
control volumes of the water and among the control volumes of air used to be neglected as the dominant mode
of heat transfer is forced convection if the fan and pump are operating. However, during night when the system is
off, the small infiltration due to wind pressure caused in earlier simulations the water in the coil to freeze. Adding
diffusion circumvented this problem, and the coil model in the library includes now by default a small diffusive term.

14.5 Discussion and Conclusions

In this case study, the Guideline 36 sequence reduced annual site HVAC energy use by 30% compared to the baseline
implementation with comparable thermal comfort. Such savings are significant, and have been achieved by changes in
controls programming only which can relatively easy be deployed in buildings.

Implementing the Guideline 36 sequence was, however, rather challenging due to its complexity caused by the various
mode changes, interlocks, timers and cascading control loops. These mode changes, interlocks and dynamic dependen-
cies made verification of the correctness through inspection of the control signals difficult. As a consequence, various
programming errors and misinterpretations or ambiguities of the Guideline were only discovered in closed loop simu-
lations, despite of having implemented open-loop test cases for each block of the sequence. We therefore believe it is
important to provide robust, validated implementations of the sequences published in Guideline 36. Such implementations
would encapsulate the complexity and provide assurances that energy modeler and control providers have correct imple-
mentations. With the implementation in the Modelica package Buildings.Controls.OBC.ASHRAE.G36, we made such an
implementation and laid out the structure and conventions.

A key short-coming from an implementer point of view was that the sequence was only available in English language, and
as an implementation in ALC EIKON of sequences that are “close to the currently used version of the Guideline”. Neither
allowed a validation of the CDL implementation because the English language version leaves room for interpretation (and
cannot be executed) and because EIKON has quite limited simulation support that is cumbersome to use for testing the
dynamic response of control sequences for different input trajectories. Therefore, a benefit of the Modelica implementation
is that such reference trajectories can now easily be generated to validate alternate implementations.

A benefit of the simulation based assessment was that it allowed detecting potential issues such as a mixed air tempera-
ture below the freezing point (Section 14.4.1) and chattering due to hard switches (Section 14.4.2). Having a simulation
model of the controlled process also allowed verification of work-arounds for these issues.

One can, correctly, argue that the magnitude of the energy savings are higher the worse the baseline control is. However,
the baseline control was carefully implemented, following our interpretation of ASHRAE’s Sequences of Operation for
Common HVAC Systems [ASH06]. While higher efficiency of the baseline may be achieved through supply air temperature
reset or different economizer control, such potential improvements were only recognized after seeing the results of the
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Guideline 36 sequence. Thus, regardless of whether a building is using Guideline 36, having a baseline control against
which alternative implementations can be compared and benchmarked is an immensely valuable feature enabled by a
library of standardized control sequences. Without a benchmark, one can easily claim to have a good control, while not
recognizing what potential savings one may miss.
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Chapter 15

Glossary

This section provides definitions for abbreviations and terms introduced in the Open Building Controls project.

Analog Value In CDL, we say a value is analog if it represents a continuous number. The value may be presented by an
analog signal such as voltage, or by a digital signal.

Binary Value In CDL, we say a value is binary if it can take on the values 0 and 1. The value may however be presented
by an analog signal that can take on two values (within some tolerance) in order to communicate the binary value.

Building Model Digital model of the physical behavior of a given building over time, which accounts for any elements of
the building envelope and includes a representation of internal gains and occupancy. Building model has connectors
to be coupled with an environment model and any HVAC and non-HVAC system models pertaining to the building.

CDL See Control Description Language.
CDL-JSON The JSON representation of the Control Description Language, which can be generated with the

modelica-json translator that is available at https://github.com/lbl-srg/modelica-json.
Control Description Language The Control Description Language (CDL) is a declarative object-oriented language that

can be used to express control sequences. CDL is a subset of the Modelica Language standard and specified in
Section 7.

Controls Design Tool The Controls Design Tool is a software that can be used to
• design control sequences,
• declare formal, executable requirements,
• test the control sequences and the requirements with a model of the HVAC system and the building in the loop,

and
• export the control sequence and the verification test in the Control Description Language.

Control eXchange Format The Control eXchange Format (CXF) is a JSON-LD representation of a CDL logic that is
intended to be readily imported and exported to and from building automation systems. CXF specifications are in
Section 8.

Control Sequence Requirement A requirement is a condition that is tested and either passes, fails, or is untested. For
example, a requirement would be that the actual actuation signal is within 2% of the signal computed using the CDL
representation of a sequence, provided that they both receive the same input data.

Control System Any software and hardware required to perform the control function for a plant.
Controller A controller is a device that computes control signals for a plant.
Co-simulation Co-simulation refers to a simulation in which different simulation programs exchange run-time data at

certain synchronization time points. A master algorithm sets the current time, input and states, and request the
simulator to advance time, after which the master will retrieve the new values for the state. Each simulator is
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responsible for integrating in time its differential equation. See also model-exchange.
Events An event is either a time event if time triggers the change, or a state event if a test on the state triggers the

change.
Functional Mockup Interface The Functional Mockup Interface (FMI) standard defines an open interface to be imple-

mented by an executable called Functional Mockup Unit (FMU). The FMI functions are called by a simulator to
create one or more instances of the FMU, called models, and to run these models, typically together with other
models. An FMU may either be self-integrating (co-simulation) or require the simulator to perform the numerical
integration (model-exchange). The first are sometimes called FMU-CS, while the second are called FMU-ME. See
further https://fmi-standard.org/.

Functional Mockup Unit Compiled code or source code that can be executed using the application programming inter-
face defined in the Functional Mockup Interface standard.

Functional Verification Tool The Functional Verification Tool is a software that takes as an input the control sequence in
CDL, requirements expressed in CDL, a list of I/O connections, and a configuration file, and then tests whether the
measured control signals satisfy the requirements, violate them, or whether some requirements remain untested.

G36 Sequence A control sequence specified by ASHRAE Guideline 36. See also control sequence.
HVAC System Any HVAC plant coupled with the control system.
HVAC System Model Consists of all components and connections used to model the behavior of an HVAC System.
Open Building Controls Open Building Controls (OBC) is the name of project that develops open source software for

building control sequences and for testing of requirements.
OBC See Open Building Controls.
Mode In CDL, by mode we mean a signal that can take on multiple distinct values, such as On, Off, PreCool.
Model-exchange Model-exchange refers to a simulation in which different simulation programs exchange run-time data.

A master algorithm sets time, inputs and states, and requests from the simulator the time derivative. The master
algorithm integrates the differential equations in time. See also co-simulation.

Non-HVAC System Any non-HVAC plant coupled with the control system.
Plant A plant is the physical system that is being controlled by a controller . In our context, plant is not only used for

example a chiller plant, but also for an HVAC system or an actuated shade.
Standard control sequence A control sequence defined in the CDL control sequence library based on a standard or

any other document which contains a full English language description of the implemented sequence.
State event We say that a simulation has a state event if its model changes based on a test that depends on a state

variable. For example, for some initial condition x(0) = x0,

dx
dt

=

{︃
1, if x < 1,

0, otherwise,

has a state event when x = 1.
Structural parameter We say that a parameter is a structural parameter if changing its value can change the system of

equations that is being evaluated in the control logic. For example, a parameter that changes a controller from a P
to a PI controller is a structural parameter because an integrator is being added. A parameter that enables an input
or that changes the size of an array is a structural parameter.

Time event We say that a simulation has a time event if its model changes based on a test that only depends on time.
For example,

y =

{︃
0, if t < 1,

1, otherwise,

has a time event at t = 1.
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